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Preface

The purpose of this research was to establish a methodology using a univariate causal STARMA

model for forecasting the relative probability of an event occurring in a geographical location during

a tine block of the day. These relative probabilities are used as input for a tasking model that

assigns scarce sensor resources so as to optimize the detection of these events. The model created

is a univariate causal STARMA model in that it only produces forecasts for one of the twenty-two

given geographical regions. The model was created to provide forecasts for one event type occurring

at geographical region 11 and appears to provide good forecasts. Future research may show that

the univariate causal STARMA methodology is a feasible approach to generate forecasts for the

other event types and other geographical regions.

I owe many thanks to Dr. Yupo Chan, my thesis advisor, and to Dr. Edward F. Mykytka,

my reader. I also thank Dr. Alfred B. Marsh III, Christopher Dearing, and Ronald C. Adamowicz

from the Department of Defense for sponsoring my research. A word of thanks is also in order for

Lt. Col. James Robinson (USAF, Retired) whose technical assistance with STARMA modelling

was invaluable. Finally, I thank my family and friends for their love and support during the past

six months.

Kelly A Greene



Table of Contents

Page

Preface........ ........ . . ..... . . ... .... .. .. .. .. .. .. .. .. .. .. .. ....

Table of Contents....... ..... . . .. ....... .. .. .. .. .. .. .. .. .. .. .. . ...

List of Figures .. .. .. ... ... ... ... ... ... ... ... ... ... ... ... ... ix

List of Tables .. .. .. .. ... ... ... ... ... ... ... ... ... ... ... .......

Abstract. .. .. .. .. ... ... ... ... ... ... ... ... ... ... ... ... ......

I. Introduction. .. .. .. .. ... ... ... ... ... ... ... ... ... ... ......

1.1 Introduction to the Problem .. .. .. ... ... ... ... ... ... ... 1

1.2 Main Objective .. .. .. .. ... ... ... ... ... ... ... ... ... 3

1.3 Secondary Objective .. .. .. .. ... ... ... ... ... ... ... ... 3

II. Literature Search and Review. .. .. .. .. ... ... ... ... ... ... ... ... 4

2.1 Introduction .. .. .. ... ... ... ... ... ... ... ... ... ... 4

2.2 Model Classes. .. .. .. .. ... ... ... ... ... ... ... ... ... 4

2.3 The ARMA Model Class. .. .. .. ... ... ... .... ... ... ... 5

2.3.1 Two Special Subclasses of the ARMA Model Class .. .. .. .. ... 6

2.3.2 The Seasonal ARMA Model Class .................. 6

2.3.3 Assumption of the ARMA Model Class ............... 7

2.4 The STARMA Model Class. .. .. .. ...... . ... ....... 7

2.4.1 Two Special Subclasses of the STARMA Model Class ....... 8

2.4.2 The Seasonal STARMA Model Class ................ 9

2.4.3 Assumption of the STARMA Class Model ............. 9

2.5 STARMA versus ARMA ............................ 10

2.6 Model Building Procedure of the Box-Jenkins method .. .. .. .. ..... 11

iii



Page

2.6.1 Stage One: Identification ............................ 11

2.6.2 Stage Two: Estimation .............................. 14

2.6.3 Stage Three: Diagnostic Checking ....................... 14

2.6.4 Stage Four: Forecasting ............................. 15

2.7 Summary ......... .................................... 15

III. Methodology ........... ........................................ 17

3.1 Introduction ......... .................................. 17

3.2 Step 1: Data Analysis ....... ............................. 18

3.3 Step 2: Autocorrelation Analysis ...... ....................... 19

3.4 Step 3: Determination of Target Region, Neighbors, and Spatial Weights 22

3.5 Step 4: Identification ..................................... 22

3.5.1 ARMA Model Building on the Target Region ................ 22

3.5.2 ARMA Model Building on the Spatial Relationships ........ .. 23

3.6 Step 5: Estimation ........ ............................... 25

3.7 Step 6: Diagnostic Checking ................................ 26

3.8 Step 7: Forecasting ...................................... 26

IV. Results and Analysis ......... .................................... 27

4.1 Introduction ........ .................................. 27

4.2 Step 1: Data Analysis of the Historical Data ..... ................ 27

4.2.1 Three Dimensional Plots of the Historical Data ............. 27

4.2.2 Two Dimensional Plots of the Average Relative Frequency for Each

Year ........................................... 28

4.2.3 Two Dimensional Plots of the Average Relative Probabilities for

Each Season ..................................... 36

4.3 Transformations on the Historir-l and Analytical Data Bases .......... 38

4.4 Step 1: Data Analysis on the Transformed Data Set NHA1 2 . . . .. . . . . . . 40

4.5 Step 2: Autocorrelation Analysis on NHA2 jj . . . . . . . . . . . . . . . .. . . . . 44

iv



Page

4.6 Transformation on the NHA 21 1 Values to Remove Seasonality ........ 44

4.7 Step 1: Data Analysis of the New Transformed Data Set NHAS.jI . . . 49

4.8 Step 2: Autocorrelation Analysis on the NHASj 1 Values ............ 49

4.9 Decision on What Data Set to Continue With ..................... 56

4.10 Step 2 Continued: Further Autocorrelation Analysis on the NHASj . 57

4.11 Step 3: Determination of Target Region, Neighbors, and Spatial Weights 58

4.12 Step 4: Identification ....... .............................. 59

4.12.1 ARMA Model Building of Target Region 11 NHAS 2,1 1,1 to Iden-

tify p and q ...................................... 60

4.12.2 ARMA Model Building of Combined Series to Identify Ar and inq. 67

4.12.3 Summary of Identification ............................ 71

4.13 Step 5: Estim ation ............................... 72

4.14 Step 6: Diagnostic Checking ....... ......................... 72

4.15 Step 7: Forecasting ....... ............................... 74

4.16 Robustness of the Model ................................... 78

V. Intervention Techniques That May Predict Pip ......... ..................... 88

5.1 Introduction ...... .................................. 88

5.2 Intervention Analysis ...... ............................. 89

5.3 Generalized Fractile Method Survey ...................... . 100

5.3.1 Note ........ .................................. 100

5.3.2 Purpose of this Study .............................. 100

5.3.3 How This Survey Will Be Used ........................ 101

5.3.4 Instructions Regarding This Survey ..................... 101

5.4 Fractile M ethod . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

5.5 Simple Exponential Smoothing .............. . ..... . 107

5.6 Adaptive Response Rate Exponential Smoothing .............. 112

5.7 Kalman Filter ........ ................................. 114

v



Page

5.8 Multiattribute Utility Theory (MAUT) ..... ................... 115

5.9 Comparisons and Contrasts of Simple Exponential Smoothing, Adaptive

Response Rate Exponential Smoothing, and the Kalman Filter ...... .. 116

5.10 Comparisons and Contrasts of Intervention Analysis and the Kalman Filter 118

5.11 Comparisons and Contrasts Between Intervention Analysis, Social Judge-

ment Theory, and Multiattribute Utility Theory .................. 119

VI. Conclusions and Recommendations ....... ............................ 121

6.1 The Best and Most Parsimonious Univariate Model for Target Region 11 121

6.2 Aptness of the STARMA Model ...... ....................... 121

6.3 Causal and Correlative ....... ............................. 122

6.4 Analytical Model as a Simple Filter ..... ..................... 122

6.5 Characteristics of the SSTMA(2 1 ,1 ,)12 Model ..................... 122

6.6 STARMA Software ....... ............................... 122

6.7 Other Methods Besides STARMA ...... ...................... 123

6.8 Differencing to Remove Seasonality ........................... 123

6.9 Robustness of the Univariate STARMA Model Selected ............. 123

6.10 Intervention Analysis ....... ............................. 124

Appendix A. Historical Database for Event Type 2 and Time Block 1 ............. 125

Appendix B. Average Relative Frequencies Over Each Year for Event Type 2 and Time

Block I ........ ..................................... 131

Appendix C. Average Relative Frequencies Over Each Season for Event Type 2 and Time

Block 1 ........ ..................................... 132

Appendix D. Analytical Database for Event Type 2 and Time Block 1 ............ 133

Appendix E. Normalized Analytical Database for Event Type 2 and Time Block 1 . . 139

Appendix F. Database of NHA for Event Type 2 and Time Block 1 .............. 145

vi



Page

Appendix G. Autocorrelations of NHA21j, . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . 151

Appendix H. NHAS Database for Event Type 2 and Time Block 1 .... .......... 153

Appendix I. Autocorrelations of NHAS for Event Type 1 and Time Block 1 ...... .. 157

Appendix J. Autocorrelations for Each of the Twenty-Two Geographical Regions . . . 159

Appendix K. Partial Autocorrelatoins of Target Region 11 NHAS for Event Type 2 and

Time Block 1 ........ .................................. 181

Appendix L. Combined Series With Target Region 11 ... ................... 182

Appendix M. Autocorrelations and Partial Autocorrelations of the Combined Series with

Target Region 11 ....... ................................ 184

Appendix N. Residuals from Fitting the SSTMA(2 1,1)12 Model ................ 186

Appendix 0. Residual Autocorrelations and Partial Autocorrelations of the Combined

Series with Target Region 11 ...... ......................... 188

Appendix P. Actual and Predicted Valued for NHAS 2,11,1 . . . . . . . . . . . . . . . .. . . . . 190

Appendix Q. Actual, Predicted, and Transformed Predicted Values of the Historical Fre-

quencies for Event Type 2, Geographical Region 11, and Time Block 1 . 192

Appendix R. Combined Series With Target Region 7 ..... ................... 195

Appendix S. Residual Autocorrelations and Partial Autocorrelations for Combined Se-

ries with Target Region 7 ...... ........................... 197

Appendix T. Actual and Predicted Valued for NHAS 2 ,7, 1 . . . . . . . . . . . . . . . . .. . . . 199

Appendix U. Actual, Predicted, and Transformed Predicted Values of the Historical Fre-

quencies for Event Type 2, Geographical Region 7, and Time Block 1 . . 201

Appendix V. Description of Floppy Disk Files ...... ...................... 204

vii



Page

Bibliography .. .. ..... ... ... ... ... ... .... ... ... ... ... ... .. 206

Vita ... .. .. ... ... ... ... ... .... ... ... ... ... ... ... ... .... 208

viii



List of Figures

Figure Page

1. Historical Data X2jI from Perspective 1 ....... ......................... 29

2. Historical Data X 2j1 from Perspective 2 ...... ......................... 30

3. Historical Data X2j, from Perspective 3 ...... ......................... 31

4. Average Relative Frequency in 1985 ....... ........................... 32

5. Average Relative Frequency in 1986 ....... ........................... 32

6. Average Relative Frequency in 1987 ....... ........................... 33

7. Average Relative Frequency in 1988 ....... ........................... 33

8. Average Relative Frequency in 1989 ....... ........................... 34

9. Average Relative Frequency in 1990 ....... ........................... 34

10. Average Relative Frequency in 1991 ....... ........................... 35

11. Average Relative Frequency in Winter ....... .......................... 36

12. Average Relative Frequency in Spring ....... .......................... 37

13. Average Relative Frequency in Summer ....... ......................... 37

14. Average Relative Frequency in Fall ....... ............................ 38

15. Normalized Historical - Analytical Data NHA 21 1 from Perspective 1 ............. 41

16. Normalized Historical - Analytical Data NHA2jl from Perspective 2 ......... ... 42

17. Normalized Historical - Analytical Data NHA 2jl from Perspective 3 ......... ... 43

18. Autocorrelations of NHA2 jI from Perspective A ...... .................... 45

19. Autocorrelations of NHA 2jl from Perspective B ...... .................... 46

20. Autocorrelations of NHA 2j, from Perspective C ...... .................... 47

21. Normalized Historical - Analytical Data De-seasonalized NHAS 21j from Perspective 1 50

22. Normalized Historical - Analytical Data De-seasonalized NHAS 2 I from Perspective 2 51

23. Normalized Historical - Analytical Data De-seasonalized NHAS 2jj from Perspective 3 52

24. Autocorrelations of NHAS 2i1 from Perspective A ..... ................... 53

25. Autocorrelations of NHAS 21 1 from Perspective B ..... ................... 54

ix



Figure Page

26. Autocorrelations of NHAS 2Jl from Persepctive C ..... ................... 55

27. Geographical Region 11 NHAS.,l1 , . . . . . . .  . . . . . . . . . . . . . . . . . . .. . . . . . . . 61

28. Autocorrelations of Target Region 11 NHAS 2 ,11,1 . . . . . . . . . . . . . . . . . . .. . . . . 62

29. Partial Autocorrelations of Ta-get Region 11 NHAS 2 ,1 l,1 . .. . . . . . . . . . . . . . . . . 63

30. Combined Series of NHAS 2,jj with Target Region 11 ..................... 68

31. Autocorrelations of the Combined Series ....... ........................ 69

32. Partial Autocorrelations of the Combined Series ...... .................... 69

33. Residuals from Fitting the SSTMA(2 1,1)12 Model to the Combined Series of Target

Region 11 .......... .......................................... 73

34. Residual Autocorrelations from Fitting the SSTMA(2 1,1)12 Model to the Combined

Series of Target Region 11 ........ ................................ 74

35. Residual Partial Autocorrelations from Fitting the SSTMA(2 1 ,1)12 Model t- the Com-

bined Series of Target Region 11 ....... ............................. 75

36. Actual and Predicted Values of NHAS 2j 1 for Target Region 11 .... ........... 76

37. Actual X2j, and Predicted Values j52jk of Geographical Region 11 ............. 77

38. Actual X 2jl and Transformed Predicted Values P
3 j k of Geographical Region 7 . . . 78

39. Combined Series of NHAS 2,j,1 with Target Region 7 .... ................. 81

40. Residual Autocorrelations from Fitting the SSTMA(2 1,1)12 Model to the Combined

Series of Target Region 7 ........ ................................. 82

41. Residual Partial Autocorrelations from Fitting the SSTMA(2 1,1 )1 _ Model to the Com-

bined Series of Target Region 11 ....... ............................. 83

42. Actual and Predicted Values of NHAS 2jl for Target Region 7 ................ 83

43. Actual X2j, and Predicted Values P2 k of Geographical Region 7 .............. 84

44. Actual X2j, and Transformed Predicted Values 52jk of Geographical Region 7 . . . 85

45. Monthly Number of Changes in the Subject of Interest ..... ................ 96

46. Actual and Predicted Values of the Subject of Interest Using an AR(1) Model . . . 97

47. Residuals from Fitting the Subject of Interest with an AR(1) Model ............ 98

48. Autocorrelations of Residuals from Fitting the Subject of Interest with an AR(1) Model 99

x



Figure Page

49. Partial Autocorrelations of Residuals from Fitting the Subject of Interest with an

AR(1) Model .. .. .. .. ... ... ... ... ... ... ... .... ... ... .. 100

50. Actual and Predicted Values using the Generalzcd Fracte Method and a Constant

Slope for the Subject of Interest .. .. .. ... ... ... ... ... ... ... .... 107

51. Autocorrelations for Region 1 NHAS 2 ,1 ,1 . . . . . . . . . . . . . . . . . . . . . . . . . 159

52. Autocorrelations for Region 2 NHAS 2 ,2 ,1 . . . . . . . . . . . . . . . . . . . . . . . . . 160

53. Autocorrelations for Region 3 NHAS 2,3 ,1 . . . . . . . . . . . . . . . . . . . . . . . . . 161

54. Autocorrelations for Region 4 NHAS 2,4 ,1 . . . . . . . . . . . . . . . . . . . . . . . . . 162

55. Autocorrelations for Region 5 NHAS 2 ,5 ,1 . . . . . . . . . . . . . . . . . . . . . . . . . 163

56. Autocorrelations for Region 6 NHAS 2 ,6,1 . . . . . . . . . . . . . . . . . . . . . . . . 164

57. Autocorrelations for Region 7 NHAS 2 ,7 ,1 . . . . . . . . . . . . . . . . . . . . . . . . . 165

58. Autocorrelations for Region 8 NHAS 2,8,1 . . . . . . . . . . . . . . . . . . . . . . . . 166

59. Autocorrelations for Region 9 NHAS 2,9 ,1 . . . . . . . . . . . . . . . . . . . . . . . . . 167

60. Autocorrelations for Region 10 NHAS 2,10 ,1 . . . . . . . . . . . . . . . . . . . . . . . . 168

61. Autocorrelations for Ricgion 11 NHAS 2 ,11,1 . . . . . . . . . . . . . . . . . . . . . . . 169

62. Autocorrelations for Region 12 NHAS 2,12 ,1 . . . . . . . . . . . . . . . . . . . . . . .. . 170

63. Autocorrelations for Region 13 NHAS 2,13 ,1 . . . . . . . . . . . . . . . . . . . . . . .. . 171

64. Autocorrelations for Region 14 NHAS 2 ,14 ,1 . . . . . . . . . . . . . . . . . . . . . . . . . 172

65. Autocorrelations for Region 15 NHAS 2,15,1 . . . . . . . . . . . . . . . . . . . . . . . . . 173

66. Autocorrelations for Region 16 NHAS 2,16 ,1 . . . . . . . . . . . . . . . . . . . . . . . . 174

671. Autocorrelations for Region 17 NHAS 2,17,1 . . . . . . . . . . . . . . . . . . . . . . . . . 175

68. Autocorrelations for Region 18 NHAS 2 ,18 ,1 . . . . . . . . . . . . . . . . . . . . . . . . . 176

69. Autocorrelations for Region 19 NHAS 2 ,19,1 . . . . . . . . . . . . . . . . . . . . . . . . 177

70. Autocorrelations for Region 20 NHAS 2,20 ,1 . . . . . . . . . . . . . . . . . . . . . . . . 178

71. Autocorrelations for Region 21 NHAS 2,21 ,1 . . . . . . . . . . . . . . . . . . . . . . . 179

72. Autocorrelations for Region 22 NHAS 2 ,22 ,1 . . . . . . . . . . . . . . . . . . . . . . . . . 180

xi



List of Tables

Table Page

1. Creation of Combined Time Series ....... ............................ 24

2. Region Exhibiting the Largest Average Relative Frequency .................. 35

3. Significant Autocorrelations of NHA2j 1 . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . 48

4. Significant Autocorrelations for NHAS 2jl . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . 56

5. Significant Partial Autocorrelations for NHAS 2j, . . . . . . . . . . . . . . . . . . .. . . . . . 57

6. First Order Neighbors to Target Region 11 ...... ....................... 58

7. Second Order Neighbors to Target Region 11 ...... ...................... 58

8. Weights Between Region 11 and its First Order Neighbors ..... .............. 59

9. Weights Between Region i1 and its Second Order Neighbors ................. 60

10. Significance of the Coefficients for All Estimated ARMA Models for Target Region 11

NHAS,J .. . . . . . . . .  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . 65

11. Significant ARMA Models for Target Region 11 NHAS 2 ,11,1 . . . . . . . . . . . . .. . . . 65

12. SMA(2) 12 model Designation for Target Region 11 NHAS 2,11,1 . . . . . . . . . . .. . . 66

13. Significance of the Coefficients for All Estimated ARMA Models for the Combined

Series ........... ............................................ 70

14. MA(1) Model for the Combined Series ....... .......................... 71

15. The SSTMA(2 1,1 )12 Model ........ ................................ 72

16. First Order Neighbors to Target Region 7 .............................. 79

17. Second Order Neighbors to Target Region 7 ............................ 79

18. Weights Between Region 7 and its First Order Neighbors ................... 80

19. Weights Between Region 7 and its Second Order Neighbors .................. 80

20. The Identified SSTMA(2 1,1) 2 Model Estimated on Target Region 7 ............ 86

21. Percent Difference Between the Parameter Coefficients of the Target Region 7 Esti-

mated SSTMA(2 1,1)12 Model and the Target Region 11 Estimated SSTMA(2 1,1 )12

Model ........... ........................................... 87

22. Intervention Analysis Multiple Regression Output ..... ................... 93

xii



Table Page

23. Subject of Interest Time Series ....... .............................. 95

24. Rankings of Nine Experts ........ ................................. 103

25. Experts' Responses to Maximum Monthly Number of Changes ............... 104

26. Experts' Responses to When 50 Changes Will Occur ....................... 104

27. Experts' Responses to When 75 Changes Will Occur ....................... 105

28. Experts' Responses to When Maximum Changes Will Occur ................ 106

29. Simple Exponential Smoothing Results ....... ......................... 109

30. Historical Frequencies X 2,j,l .......... ............................... 125

31. Historical Frequencies X2,j,1 continued ....... ......................... 126

32. Historical Frequencies X2 ,, 1 continued ....... ......................... 127

33. Historical Frequencies X2,j, 1 continued ....... ......................... 128

34. Historical Frequencies X2,J, 1 continued ....... ......................... 129

35. Historical Frequencies X2 ,, 1 continued ....... ......................... 130

36. Historical Frequencies X2,Ij Over Each Year ...... ...................... 131

37. Average Relative Frequencies X2J,1 Observed Over Each Season .............. 132

38. Analytical Predictions P2,j,1. ........................................ 133

39. Analytical Predictions P2,J,1 continued ................................ 134

40. Analytical Predictions P2,j,1 continued ................................ 135

41. Analytical Predictions P2J,1 continued ................................ 136

42. Analytical Predictions P2,j, continued ................................ 137

43. Analytical Predictions P2J,1 continued ...... .......................... 138

44. Normalized Analytical Predictions P2J,1 ....... ......................... 139

45. Normalized Analytical Predictions P2,j, continued .... ................... 140

46. Normalized Analytical Predictions P2J,1 continued ....................... 141

47. Normalized Analytical Predictions P2J,1 continued ........................ 142

48. Normalized Analytical Predictions P2,J,1 continued ........................ 143

49. Normalized Analytical Predictions P2,1, continued ........................ 144

xiii



Table Page

50. NHA 2,1 , . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145

51. NRHA 2 1j,1 continued. .. .. .. ... ... ... ... ... ... .... ... ... .. 146

52. NHA 9 1 i. continued. .. .. .. ... ... ... ... ... ... ... .... ... .. 147

53. NRA 2 ,1 1 continued. .. .. .. ... ... ... ... ... ... ... .... ... .. 148

54. NHA2 ,i continued. .. .. .. ... ... ... ... ... ... ... .... ... .. 149

55. NHA 2 ,1 ~ continued. .. .. .. ... ... ... ... ... ... ... .... ... ... 150

56. Autocorrelations of N HA 2,jl. ........ .. .. .. .. .. .. .. .. .. .. ... .... 151

57. Autocorrelations of NHA 2 , 1 ~ continued .. .. .. .. ... ... ... ... ... .... 152

58. NHAS,, . . . . . . . . . .. . . .. ... . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . 153

59. NHAS 2 ,, continued .. .. .. ... ... ... ... ... ... ... ... ... .... 154

60. NHAS 21 1 ~ continued .. .. .. ... ... ... ... ... ... ... ... ... .... 155

61. NHAS2,1~ continued .. .. .. ... ... ... ... ... ... ... ... ... .... 156

62. Autocorrelations of NHASI,I.. ...... ... .. .. .. .. .. .. .. .. .. .. .... 157

63. Autocorrelations of NHAS 2 ,j1 continued. .. .. .. ... ... ... ... ... .... 158

64. Partial Autocorrelations of NHAS 2 ,1 1,1 . . . . . . . . . . . . . . . . . . . . . . . . . . 181

65. Combined Series for Target Region 11. .. .. .. ... ... ... ... ... ... .. 182

66. Combined Series for Target Region 11 continued. .. .. .. ... ... ... ... .. 183

67. Autocorrelations and Partial Autocorrelations for the Combined Series with Target

Region 11. .. .. .. .. ... ... ... .... ... ... ... ... ... ... .... 184

68. Autocorrelations and Partial Autocorrelations for the Combined Series with Target

Region 11 continued. .. .. .. ... ... ... ... ... ... ... ... ... .... 185

69. Combined Series with Target Region 11 Residuals .. .. .. .. .... ... ... .. 186

70. Combined Series with Target Region 11 Residuals continued .. .. .. ... ... .. 187

71. Residual Autocorrelations and Residual Partial Autocorrelations of the Combined

Series with Target Region 11 .. .. .. ... ... ... ... ... ... ... ... .. 188

72. Residual Autocorrelations and Residual Partial Autocorrelations of Combined Series

with target Region 11 continued .. .. .. ... ... ... ... ... ... ... .... 189

73. Actual and Predicted Values for NHAS 2, 11 . . . . . . . . . . . . . . . . . . . . . . . . . . 190

xiv



Table Page

74. Actual and Predicted Values for NHAS 2,1 1,1 continued ..................... 191

75. Actual, Predicted, and Transformed Predicted Values of Historical Frequencies X 2,11,1 192

76. Actual, Predicted, and Transformed Predicted Values of Historical Frequencies XN2 ,1 1,1

continued .......... .......................................... 193

77. Actual, Predicted, and Transformed Predicted Valucs of Historical Frequencies X 2,11, 1

continued .......... .......................................... 194

78. Combined Series for Target Region 7 ....... .......................... 195

79. Combined Series for Target Region 7 continued .......................... 196

80. Residual Autocorrelations and Residual Partial Autocorrelations for Combined Series

with Target Region 7 ........ ................................... 197

81. Residual Autocorrelations and Residual Partial Autocorrelations for Combined Series

with Target Region 7 continued ....... ............................. 198

82. Actual and Predicted Values for NHAS 2,7,1. . . . .. . . . . . . . . . . . . . . . . . . . . . . . . 199

83. Actual and Predicted Values for NHAS 2,7,1 continued ..................... 200

84. Actual, Predicted, and Transformed Predicted Values of Historical Frequencies X,, 7,1 201

85. Actual, Predicted, and Transformed Predicted Values of Historical Frequencies X 2 ,7,1

continued .......... .......................................... 202

86. Actual, Predicted, and Transformed Predicted Values of Historical Frequencies X,, 7,1

continued .......... .......................................... 203

xv



AFIT/GOR/ENS/92M- 12

Abstract

The Department of Defense employs a world-wide sensor system to detect certain "events" of

interest. This system is resource limited and therefore incapable of providing coverage everywhere.

The purpose of this research was to establish a methodolgy using a univariate causal STARMA

model for forecasting the relative probability of an event occurring in a geographical location during

a time block of the day. These relative probabilities are used as input for a tasking model that

assigns the scarce sensor resources so as to optimize the detection of these events.

Given that an event occurs, where it occurs is controlled by some plan or doctrine which

is unknown, but for which a hypothesized model exists. As a result, there exists an analytical

data base that consists of forecasted analytical relative probabilities from the hypothesized model.

There also exists a historical data base that consists of the relative probabilities observed by the

world-wide sensor system. The causal STARMA model created uses the information from both

data bases in an attempt to create forecasts that are better than that of the analytical model.

The STARMA model is appropriate for forecasting the relative probabilities because a definte

temporal relationship and a definite spatial relationship exists in the data bases. What has hap-

pened in the past is a good indication of what may happen in the future. Also, a strong relationship

between relative probabilities of the twenty-two geographical regions exists.

The model created is a univariate causal STARMA model in that it only produces forecasts for

one of the twenty-two given geographical regions. A STARMA model would produce forecasts for all

twenty-two geographical regions simultaneously. The research was limited to univariate STARMA

modelling due to lack of STARMA software (at least locally). A causal univariate STARMA model

was created to provide forecasts for one event type occurring at geographical region 11 and appears

to provide good forecasts. The model is both correlative and causal. The model is correlative in

xvi



that it uses temporal and spatial correlations to develop the forecasts. The model is also causal in

that it employs the predictions from the analytical model.

Future research may show that the univariate causal STARMA methodology is a feasible

approach to generate forecasts for the other event types and other geographical regions.
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CAUSAL UNIVARIATE SPATIAL-TEMPORAL AUTOREGRESSIVE MOVING

AVERAGE (STARMA) MODELLING OF TARGET INFORMATION TO

GENERATE TASKING OF A WORLD-WIDE SENSOR SYSTEM

I. Introduction

1.1 Introduction to the Problem

The United States Department of Defense employs a world-wide sensor system to detect

certain "events" of interest. This system is resource limited and therefore incapable of providing

coverage everywhere (14:1).

A tasking model was designed to allocate the scarce sensor resources so as to optimize the

detection of these events. The success of the tasking algorithm depends upon the input of good

estimates for the conditional probabilities Pijk, aggregated monthly, of event type i occurring in

area j at time k given that an event type i occurred at time k. It should be noted that i (i = 1,2, 3)

indexes the event type, j (j = 1,2,..., 22) indexes the geographical region, and k (k = 1,2..., 12)

indexes the time of day (14:1). The time of day k is divided into two hour time blocks. For example,

k = 1 may represent the two hour time block from 0600 hours to 0800 hours , k = 2 may represent

the two hour time block from 0800 hours to 1000 hours, et cetera.

These conditional probabilities Pijk are expressed as the following product:

P p, .= Pjk "q, (1)

where P,,k is the conditional probability that event type i occurs at geographical

region j at time of day k given that event type i occurs at time of day k,
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Pijk is the relative probability that event type i occurs at geographical

region j at time of day k, and

qik is the probability that an event type i occurs at time k.

The probability Pijk is a relative probability because the pijk's over a given j sum to 1.0. It

is assumed that qik = 1.0 and thus, the present concern is for accurately estimating the Pijk factor

(14:1).

Given that an event occurs, where it occurs is controlled by some plan or doctrine which is

unknown, but for which an hypothesized model exists. This model generates analytical predictions

Pijk. of the desired probability Pijk, aggregated monthly. The purpose of this research is not to

investigate the analytical model and thus, it is assumed that the analytical model is adequate. The

accuracy of these predictions Pijk depends upon the strength of the hypothesized model (14:1).

A historical data base exists that co.tsists of the relative frequencies Xijk of occurrences

observed by the world-wide sensor from January of 1985 through July of 1991. Each relative

frequency Xij k is aggregated over each month, resulting in a total of 79 months of relative aggregated

frequencies Xijk for each event type i, each geographical region j, and each time block of the day k.

The historical data base contains a total of 62,568 (3 x 22 x 12 x 79 = 62,568) relative frequencies

Xijk. A combination of the historical data Xijk and the corresponding analytical prediction data

Pijk should result in a prediction iijk more accurate than that of the analytical model (14:1). The

accuracy of the predictions Pijk depends upon the adequacy of the historical data base Xijk and

the analytical model estimates lijk, as well as the correlation of future regional event occurrences

to past regional event occurrences (14:1).
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1.2 Main Objective

The main objective of this thesis is to establish a methodology for forecasting the relative

monthly probability Pijk one month into the future in order to task for a world-wide sensor system

by combining historical data Xijk with estimates iijk from an existing analytical prediction model.

To scale the problem down, the focus of this research will be limited to event type 2 of the

three events types and to time block 1 of the twelve time blocks. Thus, the forecasts will be built

using the historical monthly relative frequencies and the analytical monthly predictions for event

type 2 and time block 1 for all 22 geographical regions.

1.3 Secondary Objective

The secondary objective of this thesis is to present and summarize alternative methods for

modelling the relative monthly probability Pijk along with a comparison of these alternative meth-

ods. Policy or doctrinal changes and other external events can trigger an abrupt or gradual change

in the mean or trend of a time series. When changes happen abruptly, a Box-Jenkins model class

may take several periods to "catch up" with the effects of the external phenomena. In order to

produce a better model, one of the techniques of intervention analysis can be applied. The in-

tervention analysis methods discussed include classical intervention analysis, simple exponential

smoothing, adaptive response rate exponentially smoothing, the Kalman filter, and multiattirbute

utility theory.
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I. Literature Search and Review

2. I Introduction

The following paragraphs will summarize literature pertinent to this research. The literature

summary covers the methodologies that will be used to forecast the probability ij#k of an event

i occurring at geographical region j at time of day k one period into the future. Specifically, the

discussion covers the following topics: model classes; the ARMA model class; tile STARMA model

class; the ARMA model class versus the STARMA model class; and the model building procedures

of the Box-Jenkins method.

2.2 Model Classes

There are many model classes that describe and forecast a set of random variables distributed

over time and space. Four flexible, empirical model classes are the Autoregressive Moving Aver-

age (ARMA) model class, the Vector Autoregressive Moving Average (VARMA) model class, the

Transfer Function model class, and the STARMA model class. A modeler will commonly build all

four of these model classes using the Box-Jenkins method (20:35). The Box-Jenkins method is an

iterative approach with four stages: identification, estimation, diagnostic checking, and forecasting,

as will be discussed in Section 2.6 (12).

The ARMA model class is univariate and is on!y applicable to a single time series of data;

the ARMA model class can only deal with past observations at a particular point in space (20:35).

Special subclasses of the ARMA model class are the Autoregressive (AR) model and the Moving

Average (MA) model. A special case of the ARMA model is the Seasonal Autoregressive Moving

Average (SARMA) model that occurs when seasonality is present in the time series.

The VARMA model class allows for the modeling of multiple time series (24:802). The

VARMA model class can describe N time series of the same variable at different points in space

but can not account for the interrelatiorships between the N time series (20:35).
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The Transfer Function model class allows for the modeling of multiple time series, also. Tile

Transfer Function model class can describe N time series consisting of different variables at the

same point in space (4:74). The Transfer Function model class will account for the interrelationships

between the N time series, but cannot account for spatial differences (4:74).

The STARMA model class is useful in describing time series of spatially located data (11:401).

Processes amenable to modeling via this model class are characterized by a single ran-
dom variable observation at N fixed sites in space, wherein dependencies between the
N time series are systematically related to the relative physical location of the sites.
(18:255)

2.3 The ARMA Model Class

Let x(t) be an observation at time t. The ARMA model class can be written as:

p qX(t) = + E OkX(t - k) - E 0kf(t - k) + c(t) (2)
k=1 k=1

where p is the autoregressive order,

q is the moving average order,

Ok is the autoregressive parameter of order k,

Ok is the moving average parameter of order k

is the constant term, and

c(t) are error terms (16:253).

The common designation of an ARMA model is:

ARMA(p, q) (3)
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2.3.1 Two Special Subclasses of the ARMA Model Class. Two special subclasses of the

ARMA model class are the Autoregressive (AR) subclass and tile Moving Average (MA) subclass.

The ARMA model class is a combination of the AR model subclass and the MA model subclass.

An AR model subclass is appropriate when there are no significant moving average parameters in

the model (11:401). This occurs when the moving average order q = 0 and the only significant

parameters are autoregressive (11:401). The common designation of an Ai{ model is:

AR(p) (4)

The MA model subclass contains no significant autoregressive parameters (11:401-402). This

occurs when the autoregressive order p = 0 and the only significant MA parameters are moving

average (11:401-402). The common designation of a MA model is:

MA(q) (5)

2.3.2 The Seasonal ARMA Model Class. It is possible to have a Seasonal Autoregressive

Moving Average (SARMA) model.Seasonlity is characterized by a periodic movement in the data

that almost always repeats itself. The season is defined as the length of time over which the periodic

movement occurs. Typically, the length of a season is ore year. However, it is possible to have

a season that repeats itself every six months or every two years. The common designation of a

SARMA model is:

SARMA(p, q)sar,sma (6)

where sar is the seasonal autoregressive season length and

sma is the seasonal moving average season length.
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The common designation of a Seas'inal Autoregressive (SAR) model is:

SAR(p) sa (7)

The common designation of a Seasonal Moving Average (SMA) model is:

SM A(q),ma (8)

2.3.3 Assumplzon of M/e ARMA Model Class. The ARMA model class assumes that (I),

the error terms, are independent raindom normal error terms with zero mean and constant variance

(16:242-243).

2.4 The STARMA Model Class

Let x(t) represent a N x 1 vector of observations at time t at N locations. The STARMA

model family can be written as:

P ), q mk

X(0) + E E3 0,uWi(t - k) - E E Ok: Wj(t - k) + f(t) (9)
k=l i=O k=11=0

where is the constant term,

p is the temporal autoregressive order,

q is the temporal moving average order,

Ak is the spatial order of the kth autoregressive term,

mk is the spatial order of the kth moving average term,

ekr is the autoregressive parameter of temporal order k and spatial order 1,

Oki is the moving average parameter of temporal order k and spatial order 1
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W1 is the N x N weight matrix of spatial order 1, and

e(t) are error terms (18:256).

The common designation of the STARMA model is:

STARMA(p ,, 2 ,..,A,, q,I,.,'\ (10)

The IV, weight matrix has non-zero elements Wijk only for those pairs of sites i and j that

are lth-order neighbors (20:36). It is assumed that W is the identity matrix I when 1 = 0. First-

order neighbors are closer than second-order neighbors that are closer than third-order neighbors,

et cetera (18:256). The weights allow for a general specification of both a weighting scheme and

a hierarchical ordering of spatial neighbors (21:23). Each row of the weight matrix must sum to

one (21:26). The specification of the weights should reflect some physical property of the modelled

system (20:36). Weights can be used to specify such things as the distance between points in space,

common boundaries between points in space, or natural barriers such as rivers between points in

space (20:36).

2.4.1 Two Special Subclasses of the STARMA Model Class. Two special subclasses of the

STARMA model class are the Spatial-Temporal Autoregressive (STAR) subclass and the Spatial-

Temporal Moving Average (STMA) subclass. The STARMA model class is a combination of the

STAR model subclass and the STMA model subclass. A STAR model subclass is appropriate

when there are no significant moving average parameters in the model (11:401). This occurs when

the temporal moving average order q = 0 and the only significant parameters are autoregressive

(11:401). The common designation of a STAR model is:

STAR(q,,., (11)



The STMA model subclass contains no significant autoregressive parameters (11:401-402).

This occurs when the temporal autoregressive order p = 0 and the only significant STMA parameters

are moving average (11:401-402). The common designation of a STMA Model is:

STMA(q, 2 .... \.) (12)

2.4.2 The Seasonal STARMA Model Class. It is possible to have a Seasonal Spatial-Temporal

Autoregressive Moving Average (SSTARMA) model. The common designation for a seasonal

STARMA model is:

SSTARMA(p, 2 .... \,, q.\,\2 ...... \q)sar,sma (13)

where sar is the seasonal autoregressive season length and

sma is the seasonal moving average season length.

The common designation of a Seasonal Spatial-Temporal Autoregressive (SSTAR) model is:

SSTAR(p1 ,k 2,...,Ap,)sar (14)

The common designation of the Seasonal Spatial-Temporal Moving Average (SSTMA) Model

is:

SSTMA(q.\, ,\ . Aq)SMa (15)

2.4.3 Assumption of the STARMA Class Model. To simplify the model building procedure

in the STARMA model class, one assumption is made. The assumption, known as the sphericity

assumption, says that c(t), the error terms, are independent random normal error terms with zero
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mean and constant variance (11:402). This assumption is called the sphericity assumption because

it assumes that the contours of constant density of the error terms are spheres (11:402).

2.5 STARMA versus ARMA

The elements of a STARMA model include both time and spatial dependence lagged in time

and space to allow for temporal and spatial correlation (15:96). Temporal correlation is a pattern

in the time dimension. Spatial correlation is a pattern in the space dimension. STARMA models

reflect the ideas " ... that the recent past exerts more influence than the distant past ... and

that near sites exert more influence on each other than distant ones" (18:255).STARMA can be

applied to a wide range of problems with a spatial-temporal data structure. Past applications of

the STARMA model class include river flow (17), population diffusion (4), hotel demand (18), and

the spread of disease (22).

The STARMA model class is a forecasting tool that can predict future observations based

on past observations at N geographical locations and a given hierarchical spatial weighting. The

ARMA model class also can represent and forecast N time series each at a different site; however,

each site has a different ARMA model. Though the ARMA approach will require construction

of N separate models, both model building approaches require about the same amount of effort

(18:258). The STARMA model class provides many advantages over the ARMA model class when

used as a forecasting tool.

In a study comparing the STARMA forecasting approach to that of ARMA, "the STARMA

approach clearly produced better forecasts" (18:267). Average forecast errors using the STARMA

representation are generally smaller than that of the ARMA representation (18:267). Pfeifer and

Bodily credit the autoregressive spatial terms in the STARMA model as one of the reasons that

STARMA produces better forecasts (18:270). They also believe that the STARMA model produces

better results because it is a simultaneous estimation procedure that incorporates the correlation
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between sites (18:270). The STARMA model may produce better results because it is a simpler

model that has fewer parameters than the N ARMA models (18:270).

2.6 Model Building Procedure of the Box-Jenkins method

The Box-Jenkins method is a iterative approach that consists of four stages:

1. Identification.

2. Estimation.

3. Diagnostic Checking.

4. Forecasting.

If any stage is unsuccessfully completed, the procedure returns immediately to the identifica-

tion stage.

2.6.1 Stage One: Identification. The purpose of the identification stage is to employ statis-

tical procedures to specify tentatively which STARMA classes are appropriate for the data (24:805).

The two statistics used to identify potential STARMA classes are the spatial-temporal autocorre-

lations and the spatial-temporal partial autocorrelations at temporal lag I and spatial lag k at

time lag s (19:119). The autocorrelations measure the relationship, or how much spatial-temporal

interdependence exists, between data points of the N time series (12). The modeler uses these

autocorrelations to determine if the data is stationary. Statistically, a time series is stationary if

the joint distribution of any sequence of observations x(t + 1), x(t + 2),..., x(t + n) does not depend

upon t (5:26). In other words, the mean of the time series E[x(t)I, the variance of the time series

*r2 (t), and the lag k autocorrelations of the time series Corr[x(t), z(t + k)] do not change with t

(5:26,28). The joint distribution of any sequence of observations in a non-stationary time series

does depend on t and thus, there are several types of non-stationary data (5:26). An example of

non-stationary data behaves as if the time series does not have a constant mean and a constant
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variance. In other words, the observations in any local segment of time look like the observations

in any other segment, but the means and variances may differ significantly.

If the data is non-stationary in the mean, a technique called "differencing" can be applied.

The differencing technique is discussed in more detail in Chapter 3. There are two types of time

series that are non-stationary in the mean. The first type of data that is non-stationary in the

mean behaves as if the time series does not have a constant mean (16:255). In other words, the

observations in any local segment of time look like the observations in any other segment, but the

means of the two local segments being compared differ significantly (16:255). The second type of

data that is non-stationary in the mean behaves as if the time series does not have a constant

mean and a constant slope (16:255). In other words, the observations in any local segment of

time look like the observations in any other segment, but the means and slopes of the two local

segments being compared differ significantly (16:255). For example, the time series may exhibit a

linear trend or gradual shift in the data causing non-stationarity in the mean. As another example,

the time series may exhibit a step change resulting in non-stationarity in the mean. The second

type of non-stationarity in the mean can also result from several phenomena occurring in the data.

For example, a non-linear trend or gradual shift in the slope can cause non-stationarity in the

time series (16:255). A non-stationary time series that can be reduced to a stationary time series

through differencing is a homogeneous non-stationary time series (16:257).If the data is stationary,

the modeler can identify a potential subclass and the orders of the model.

The modeler identifies the subclass by examining the autocorrelations and the partial auto-

correlations. A STAR process exhibits space-time partial autocorrelations that go to zero after p

lags in time and Ap lags in space (19:120). The space-time autocorrelations of a STMA process will

go to zero after q lags in time and mq lags in space (19:120). The modeler would further investigate

a STARMA model class if both the autocorrelations and the partial autocorrelations" exponentially

go to zero.

12



Once the modeler identifies a model subclass, the temporal autoregressive order p, t.he tem-

poral moving average order q, the spatial autoregressive order A , and the spatial moving averages

order mk are identified. If the modeler identifies a STAR model subclass, the only temporal order

to determine is p and the only spatial order to determine is Ap. p is identified to be equal to the

number of temporal lags where the space-time partial autocorrelations are significantly different

from zero. AP is identified to be equal to the number of spatial lags where the space-time partial

autocorrelations are significantly different from zero. If the modeler projects a STMA process, q is

the only temporal order to identify and mq is the only spatial order to determine. q is identified

to be equal to the number of temporal lags where the space-time autocorrelations are significantly

different from zero. in is identified to be equal to the number of spatial lags where the space-time

autocorrelations are significantly different from zero. If the modeler identifies a STARMA model

class, the temporal orders p and q of a STARMA model class are identified in the same fashion

that p and q were identified for a STAR model subclass and a STMA model subclass, respectively

(19:120).The spatial orders Ap and mq of a STARMA model class are identified in the same fashion

that A , and mq were identified for a STAR model subclass and a STMA model subclass, respectively

(19:120).

The identification of a candidate model and its orders is never easy because the autocorre-

lations and the partial autocorrelations are only estimates. Every data set contains some noise or

error component. A pure STAR, STMA, or STARMA process only exists in theory. It is possible

for a data set to exhibit characteristics of many different model specifications. For example, a

data set can exhibit characteristics of an STAR process but its space-time autocorrelations and

space-time partial autocorrelations may exhibit the characteristics of a STARMA process. Model

building is both an art and a science and will require the judgement of the modeler to choose the

best candidate model and its orders.
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2.6.2 Stage Two: Estimation. After choosing the best potential candidate model and its

orders, the modeler estimates the autoregressive parameters Oki and the moving average parame-

ters Oki (24:809). The efficient estimates of both Oki and 0ki are maximum likelihood estimators

(24:809). Calculating the maximum likelihood estimators of the parameters is not an easy task and

therefore, the modeler usually approximates the parameters using a conditional likelihood function

that minimizes the conditional sum of squares (20:41-42). Estimating the STAR parameters then

is easy since the conditional likelihood function is also a least square estimate; the modeler can

simply estimate the STAR model parameters using a linear regression (20:42). The estimation of

the STMA and STARMA model parameters is not so effortless due to non-linearity. The modeler

can employ various non-linear optimization techniques, such as gradient methods or linearization,

to calculate the STMA and STARMA model parameters (20:42).

At this point, the modeler has a candidate representation of the data with estimated param-

eters. If necessary, the modeler can calculate confidence intervals around the parameters and the

constant variance term.

2.6.3 Stage Three: Diagnostic Checking. The objective of diagnostic checking is to verify

that the selected model is adequate. An adequate model sufficiently describes and sufficiently

represents the data. The selected model must pass two tests to be an adequate model (18:257).

The first test examines the statistical significance of the model parameters (18:257). The

model parameter of the highest order for p, q, Ap, and rnk must be significantly different from zero.

If any parameter for its respective highest order is insignificant, then the modeler will return to the

identification stage.

The second test verifies that the model residuals are white noise which, in turn, ensures that

the model does not violate the sphericity assumption (20:43). If the space-time autocorrelations

and the space-time partial autocorrelations of the residuals are all close to zero, then the model

residuals are random. The analysis of the space-time autocorrelations "... guards against model
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mis-specification and searches for directions of improvement" (24:809). If a scatter plot of the

residuals shows no patterns, then it can be concluded that the model residuals are from a random

process. If the selected model fails the second test, the modeler will return to the identification

stage to represent the residuals as a separate STARMA model class and combine it with the original

model (20:43).

After passing the diagnostic check, the model is adequate to describe and represent the N

time series.

2.6.4 Stage Four: Forecasting. The first step in the forecasting stage is to select the best and

most parsimonious model. There are two criterion used to select the best and most parsimonious

model. The first criterion is the fraction of the variance described by the model, adjusted for the

degrees of freedom, R2 . The second criterion is the sum of the squared residuals, SSR. The best and

most parsimonious model is that model which uses the smallest number of parameters necessary to

adequately describe and represent the N time series such that the R2 is maximized and the SSR

is minimized. It is best to place more weight on the R2 value over the SSR value because the / 2

value accounts fur the number of parameters in the model by adjusting for the number of degrees

of freedom. The ?2 value can actually get. worse in some cases as the number of parameters is

increases, whereas the SSR value can only get better as the number of parameters increases. Once

the best and most parsimonious model is selected, the model can be used to predict the N time

series.

2.7 Summary

There are many empirical model classes that describe and forecast time series. The charac-

teristics of the data drive the type of model class to use. When the data consists of time series at N

points in space that are spatially and temporally correlated, a STARMA model class will produce

the best representation and description of the inherent, underlying processes.
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There are four major iterative steps in building a STARMA model that can predict future

observations: identification, estimation, diagnostic checking, and forecasting. A model that passes

the diagnostic checking stage is the most adequate model. A model that passes the diagnostic

checking and minimizes the temporal and spatial orders is the best and most parsimonious model

to forecast future events.
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III. Methodology

3.1 Introduction

Due to the lack of STARMA software (at least locally), a full STARMA model on the twenty-

two geographical regions will not be developed. Instead, a univariate STARMA model on one of

the geographical regions will be developed. The main difference between a STARMA model and a

univariate STARMA model is that a STARMA model would develop forecasts for all twenty-two

geographical regions simultaneously whereas the univariate STARMA model develops forecasts

for one geographical region, which is called the target region. The univariate STARMA model

develops its forecasts using the temporal correlations in the target region time series and the

spatial correlations between the target region time series and the time series of the other twenty-

one regions. The model developr i for the target region is appropriate for producing forecasts for

the target region only Ti. anivariate STARMA model is not meant to be a development for the

full STARMA mrlel. The univariate STARMA model uses the general approach of the STARMA

model to priduce spatial-temporal forecasts for the target region.

The methodology for developing a univariate STARMA model can be broken into seven steps:

1. Data analysis.

2. Autocorrelation Analysis.

3. Determination of Target Region, Neighbors, and Spatial Weights.

4. Identification.

5. Estimation.

6. Diagnostic Checking.

7. Forecasting.

This chapter explains the methodology of the nine steps used to develop a univariate STARMA

model.
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3.2 Step 1: Data Analysis

Data analysis is the first step. The historical data base consist of time series data of relative

frequencies of occurrences, aggregated monthly. The analytical prediction model estimate data

base consist of time series data of probabilities, aggregated monthly. Time series data is data

collected over a certain amount of time. A relative monthly frequency Xijk in the historical data

base represents the observed frequency that an event of type i (i = 1, 2, 3) occurred in area j (j

1,2, ...,22) at time of day k (k = 1,2, ...,12). A probability in the analytical prediction model

estimate data base represents the predicted monthly probability Pijk that an event of type i (i

1,2,3) occurs in area j (j = 1,2, ..., 22) at time of day k (k = 1,2,..., 12). It should be noted that

the analytical data base does not consists of relative probabilities. The historical data base includes

all relative monthly frequencies from January 1985 through July 1991 resulting in a total of 62,563

(3 x 22 x 12 x 79 = 62,568) relative monthly frequencies. The analytical data base includes all

monthly probabilities from January, 1985, through July, 1991, resulting in a total of 62,568 monthly

probabilities.

The problem was scaled down to only include event type 2 and time day 1. This reduced

the total number of relative historical monthly frequencies to 1,738 (22 x 79 = 1,738) and the total

number of analytical monthly probabilities to 1,738.

Data analysis begins with generating three-dimensional plots of the historical data for all

geographical regions over time (January 1985 through July 1991) in order to look for possible

patterns in the data. Version 3.0 of the software package GNVUPLOT is used to generate the plots.

GNUPLOT is an interactive plotting program. Examination of plots of the frequency distributions

aggregated over each year may reveal a trend pattern, a gradual shift in the frequency distribution.

Examination of plots of the frequency distributions aggregated over each of the four seasons may

reveal a pattern of seasonality, a periodic movement in the data that almost always repeats itself

every twelve months.
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Experts familiar with the historical data base state that theoretically speaking, the historical

data base should be trendless. The experts also state that several cycles or seasons are theoretically

expected in the historical data. A cycle of 24 hours, a season of 12 months, and a cycle of 11 years

is expected (2). Since the problem was scaled down to time block 1, the 24 hour cycle does not

need to be modelled. Since the historical and analytical databases contain approximately six and

one half years of data, there are not enough observations to model the 11 year cycle. The only

season that will be of interest is the expected 12 month season.

3.3 Step 2: Autocorrelation Analysis

The second step is to conduct an autocorrelation analysis of the data using Student Version 5.1

of the software package MicroTSP developed by Quantitative MicroSoftware in Irvine, California.

MicroTSP is an IBM compatible regression and forecasting tool that contains many time series

applications. Due to lack of software (at least locally) that can compute sample autocorrelations and

sample partial autocorrelations of spatial-temporal data, the sample autocorrelations and sample

partial autocorrelations are computed for each of the 22 geographical regions in the temporal

dimension. The actual theoretical temporal autocorrelations and temporal partial autocorrelations

are unknown and are estimated using the sample temporal autocorrelation function and the sample

temporal partial autocorrelations function, respectively. For the remainder of this report, the

term autocorrelation is assumed to mean sample temporal autocorrelation and the term partial

autocorrelation is assumed to mean sample temporal partial autocorrelation. The autocorrelations

are calculated using the following equation:

= - t][x(t + k) - (16)
ZT=[x(t) - X)2]

where rk is the autocorrelation at lag k,

T is the number of observations
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and K = T

for k = 1,2,.. .,K (16:260).

The partial autocorrelations are calculated using the following equation:

k
ri = L Cirj-i (17)

i--1

where rj is the partial autocorrelation of the jth autoregressive process

Ok, is the ith coefficient in an autoregressive process of order k,

for j = 1,2,..., k (16:261).

It is common practice to compute the autocorrelations and partial autocorrelations for the first

T lags, where T is the total number of observations in the series (16:260). For example, the historical

data contains 79 observations for each ger 6 raphical region and thus, it would be appropriate to

calculate autocorrelations and partial autocorrelations for the first 20 lags (1 = 19.75).

The first purpose of autocorrelation analysis is to ensure the data is stationary, which means

that the joint distribution of any sequence of observations x(t -- 1), x(t + 2), . . . x(t + n) does not

depend on t. The autocorrelations measure the reiationship or how much interdependence exists

between neighboring points in a time series.

Stationarity can be detected by examining a plot, of the autocorrelations and by conducting

ad hoc tests. A plot of the autocorrelations may reveal non-stationarity in the data. There are

two ad hoc tests to determine if the data is stationary. The first ad hoc stationarity test is always

conducted first. If the times series does not pass the first ad hoc stationarity test, then the second

ad hoc stationarity test is conducted. The first ad hoc stationarity test states that it is reasonable

to assume the data is stationary if any one of the first three time lag autocorrelation values is

not significantly different from zero (12). The second stationarity test states that it is reasonable
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to assume that the data is stationary if any one of the first two time lag autocorrelation values

is significantly different from zero and is followed by a time lag autocorrelation value that is also

significant significantly different from zero but opposite in sign (12). If the data fails to pass the

stationarity tests, it is reasonable to assume that the data is not stationary. If the data passes any

one of the tests, it is reasonable to assume that the data is stationary.

If the data is non-stationary in the mean, the data can be differenced in an attempt to remove

the non-stationarity by using the following equation:

x(t) = X(t) - x(t - 1) (1S)

It should be noted that first differenced data will lose one degree of freedom. Differencing is

a technique that attempts to remove linear trend from the data. Sometimes it is necessary to take

multiple differences, which attempts to remove non-linear trend.

The second purpose of autocorrelation analysis is to examine for seasonality. Detection is best

seen as a large autocorrelation value that is significantly different from zero. It should be noted

that a sea.sonality of 12 months is expected. Thus, a significant autocorrelation value is expected at

the twelfth lag. Another way to detect for seasonality is a repetitive cycle in the autocorrelations.

If the data contains non-stationary seasonality, it is reasonable to assume that the data may be

de-seasonalized by taking a difference equal to the number of periods in the season. For example, if

the non-stationary season consists of 12 periods, the data call be de-seasonalized using the following

equation:

x(t) = x(f) - x(t - 12) (19)

It should be noted that a se hat is differenced by 12 periods will lose 12 degrees of freedom.
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3.4 Step 3: Determnation of Target Region, Neighbors, and Spatial Weights

The univariate STARMA model allows for the spatial-temporal modelling of one geographical

region termed the"target region." Once the target region is selected, the neighbors are determined

exogenously from the data such that first order neighbors influence the target region more than

second order neighbors and second order neighbors influence the target region more than the third

order neighbors et cetera. In the classical univariate STARMA model, first order neighbors are

closer in distance than second order neighbors and second order neighbors are closer in distance

than third order neighbors et cetera. Finally, spatial weights are determined to represent the

correlation or relationship between the target region and each of its neighbors. In the classical

univariate STARMA model, the spatial weights are a function of the distance between the target

region and the respective neighbor.

3.5 Step 4: Identification

Once the data is stationary, the fourth step of identifying the univariate STARMA model

begins. Due to the lack of commercial software packages (at least locally) that develop univariate

STARMA models, an ARMA approach will be used to identify the univariate STARMA model

(13).

3.5.1 ARMA Model Building on the Tai et Region. The first step is to develop an ARMA

model on the target region. The autoregressive parameter p and the moving average parameter

q will be calculated using the ARMA forecasting technique of MicroTSP. Of course, the stages

of identification, estimation, and diagnostic checking of the Box-Jenkins iterative approach must

be followed. The forecasting stage need only be conducted after a univariate STARMA model

has been successfully through the first three stages. The p and q values from the ARMA model

developed on the target region will be used as the actual p and q values in the univariate STARMA

model building identification stage. The p value represents the temporal autoregressive order of the
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univariate STARMA model. Likewise, the q value represents the temporal moving average order

of the univariate STARMA model.

The criterion for selected the best ARMA Model for the target region will be that ARMA

model that is the best and most parsimonious model that passes diagnostic checking. A best model

is defined as a model that adequately describes and represents the time series such that the fraction

of the variance explained by the model, R2 , is maximized and the sum of the squared residuals,

SSR, is minimized. A parsimonious model is defined as a model that uses the smallest number of

parameters necessary.

3.5.2 ARMA Model Building on the Spatial Relationships. After the best and most parsi-

monious model has been found for the target region, the spatial relationship between the target

region and its neighbors is identified.The first step is to energy normalize the weights for each order

1. In effect, the weights for the lth order neighbors of the target region sum to 1.0. The second

step is to create a time series consisting of the weighted sum of the observations that are lth order

neighbors for all 1. In effect, the z time series of the Ith order neighbors are converted into a single

time series using the following relationship:

Z

Y(t) = E Wjizj(t) for 1= 1,2,...,L (20)
j=1

where YI(t) is the weighted sum of the Ith order neighbors at time t,

z is the number of lth order neighbors to the target region

W,j. is the weight given to the spatial relationship between target region

and neighbor j of order 1

Xj(t) is the observation of the jth neighbor of order I at time t,

L is the largest neighbor order, and

the weights sum to unity for each order 1 (13:22).
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The weights are defined for an order I when the target region and region j are neighbors

(13:22).

The next step creates a single time series containing the times series of the target region

and the 1 time series of weighted neighbors. The time series Yo(t) is the target region time series.

Table 1 shows how the single time series is formed where n is the total number of observations.

Table 1. Creation of Combined Time Series

COMBINED TIME SERIES

Yo(t = 1)
Yl(t 1)
Y2 (t I 1

)Y (t~i
Yo(t 2)
Yl(t 2)
Y 2 (t 2)

Yy,(t =2)

Yo(t = n)
Y1 (t = n)
Y 2 (t = n)

Yy(t = n)

The Box-Jenkins Autoregressive Moving Averages (ARMA) forecast program in MicroTSP

will calculate the kth spatial autoregressive order ,k and the kth spatial MA moving averages

order Mik. This is accomplished by developing an ARMA model on the combination series where

the value of p corresponds to the value of the identified mk and the value of q corresponds to the

value of the identified Ak.

If the best and most parsimonious model found in the ARMA model building-of the target

region was a pure AR or seasonal autoregressive (SAR) process, it is not necessary to calculate the

spatial moving average mk value because mk is assumed to be equal to zero. If the best and most
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parsimonious model found in the ARMA model building of the target region was a pure MA or

seasonal moving averages (SMA) process, it is not necessary to calculate the spatial autoregressive

Ak value because Ak is assumed to be equal to zero. If the best and most parsimonious ARMA model

found for the target region was an ARMA or seasonal autoregressive moving averages (SARMA)

model, both the ink and the A,, values must be calculated. However, it is still quite possible that

nik or Ak will equal zero though an ARMA or SARMA model was specified for the target region.

Of course, the ARMA model building process to determine the spatial relationships between

the target region and its neighbors must follow the first three stages of the Box-Jenkins iterative

approach. The p and q values of the best and most parsimonious model will be used as the ink

and Ak values, respectively, in the univariate STARMA model building identification stage. The p

value represents the spatial autoregressive order AP of the univariate STARMA model. Likewise,

the q value represents the spatial moving average order mq of the univariate STARMA model.

The criterion for selecting the best ARMA Model for the spatial relationships will be the

same as that of the ARMA model on the target region. If either the mk value or the Ak value

is non-zero, there is a spatial relationship between the target region and its neighbors and it is

appropriate to continue modelling the data as a univariate STARMA model. If both the mik value

and the Ak value are zero, there is no spatial relationship and thus, a univariate STARMA model

is not be appropriate for the data and the specified weights.

3-6 Step 5: Estimation.

Once the values for p, q, Ak and mk have been identified through the ARMA modelling, the

estimation of the univariate STARMA model parameters is conducted. The Box-Jenkins program

of MicroTSP will estimate all univariate STARMA parameters using the combination series.
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3.7 Step 6: Diagnostic Checking.

Diagnostic checking of the univariate STARMA model insures the coefficients of the param-

eters are significantly different from zero. The diagnostic checking also ensures that e(t), the error

terms, are white noise. MicroTSP calculates the t-statistic and the two tailed significance of each

of the coefficients. Assuming a 90% confidence level, a coefficient is significantly different from zero

if its corresponding two tailed significance is less than or equal to 0.10.

To ensure that c(t), the error terms, are white noise, a plot of e(t) will be generated. The

autocorrelations and partial autocorrelations of c(t), along with the Q-statistic of the sample auto-

correlations, will be calculated using MicroTSP. If the autocorrelations pass the stationarity test,

then e(t) is white noise.

3.8 Step 7: Forecasting.

The first step in the forecasting stage is to select the best and most parsimonious model. The

best and most parsimonious model is that model which uses the smallest number of parameters

necessary to adequately describe and represent the N time series such that the ft2 is maximized and

the SSR is minimized. The best and most parsimonious model is desired to keep the model as simple

as possible. One way to keep the model simple is to include as few parameters as is necessary to

adequately represent the data. Once the best and most parsimonious model is selected, the model

can be used to predict the N time series.
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IV. Results and Analysis

4.1 Introduction

The development of a STARMA model is an iterative process. Several steps were repeated.

This section summarizes each step as it occurred in the iterative process.

4.2 Step 1: Data Analysis of the Historical Data

4.2.1 Three Dimensional Plots of the Historical Data. Three dimensional plots using several

perspectives of the historical data with time on the x-axis, geographical region on the y-axis and

X2j on the z-axis were examined. The historical data plots can be found in Figure 1, Figure 2,

and Figure 3. The x-axis is set up such that x = 1 corresponds to January 1985, x = 2 corresponds

to February 1985, ..., aid x = 79 corresponds to July 1991. The y-axis is set up such that y = 1

corresponds to geographical region 1, y = 2 corresponds to geographical regions 2, ..., and y = 22

corresponds to geographical region 22. The values for the historical data can be found in Appendix

A.

The different perspectives allow for viewing of the three-dimensional plots from several view

points. The perspective controls the way the three-dimensional coordinates of the plot are mapped

into the two-dimensions by setting the rotation angles (in degrees) (26:29-30). Six different per-

spectives are used in this paper. Perspectives 1, 2, and 3 are used on three-dimensional plots of

data such as the historical data base. Perspectives A, B, and C are used on three-dimensional

plots of autocorrelations and partial autocorrelations. Perspective 1 is aligned such that the x-axis

is rotated 10 degrees and the y-axis is rotated 30 degrees. Perspective 2 is aligned such that the

x-axis is rotated 10 degrees and the y-axis is rotated 60 degrees. Perspective 3 is aligned such that

the x-axis is rotated 10 degrees and the y-axis is rotated 80 degrees. Perspective A is aligned such

that the r-axis is rotated 30 degrees and the y-axis is rotated 30 degrees. Perspective B is aligned
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such that the x-axis is rotated 30 degrees and the y-axis is rotated 60 degrees. Perspective C is

aligned such that the x-axis is rotated 30 degrees and the y-axis is rotated 80 degrees.

It is very obvious from Figures 1, 2, and 3 of the historical data using several perspectives

that there are numerous observations that have a X2j1 value of 0.0. Because the observations are

relative frequencies, the observation values are limited to range between 0.0 and 1.0. Geographical

regions 7, 9, and 11 appear to have the most nonzero X2j, values. According to the experts on the

historical data base, the odd numbered regions are more likely to have non-zero X2j1 values than

the even numbered regions (2). Few nonzero observations occur in geographical regions 1, 2, 3, 4,

5, 6, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, and 22. The year 1986 had few nonzero X2jj values.

4.2.2 Two Dimensional Plots of the Average Relative Frequency for Each Year. Two di-

mensional plots of the average relative frequency of the historical data base for each year were

examined. The two-dimensional plots for each year can be found in Figures 4 through 10. The

x-axis is set up such that x = 1 corresponds to Region 1, x = 2 corresponds to Region 2, ..., and x =

22 corresponds to Region 22. The values on the y-axis are the average relative historical frequencies

for the given year for the corresponding region. The values for the average relative frequency for

each year can be found in Appendix B.

It should be noted that the data collected for 1991 in Figure 10 included data only up through

July. The purpose behind examining these plots is to see if there is a trend in the data. The average

relative frequencies for each year were different but there did not appear to be any pattern or trend

to the changes over the years. One thing of interest is that the geographical region that exhibited

the largest average relative frequency for each year changed over the years. Table 2 lists the

geographical region that exhibited the largest average relative frequency for the respective year.

NOTE: The year 1991 only includes information through July.
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Figure 3. Historical Data X2j, from Perspective 3
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Figure 4. Average Relative Frequency in 1985
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Figure 5. Average Relative Frequency in 1986

32



0.4

0.35

0.3

0.25

Prob. 0.2

0.15

0.1

0.05

0
5 10 15 20

Region

Figure 6. Average Relative Frequency in 1987
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Figure 7. Average Relative Frequency in 1988
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Figure 8. Average Relative Frequency in 1989
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Figure 9. Average Relative Frequency in 1990
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Figure 10. Average Relative Frequency in 1991

Table 2. Region Exhibiting the Largest Average Relative Frequency

Year iRegion

1985 9
1986 16
1987 7, 8 (tie)
1988 9
1989 8

1990 11
1991 11
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4.2.3 Two Dimensional Plots of the Average Relative Probabilities for Each Season. The

next set of plots examined were two-dimensional plots of the average relative historical frequencies

for each of the four seasons: winter, spring , summer, and fall. The two-dimensional plots for

each season can be found in Figures 11 through 14. The values for the average relative historical

frequencies fo each of the seasons can be found in Appendix C.
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Figure 11. Average Relative Frequency in Winter

There appears to be a change in the average relative frequencies for each season. The average

relative frequencies during the winter in Figure 11 appear to favor geographical regions 2 through

13. The three regions that have the largest relative frequency during the winter season are regions

5, 6, and 7. The spring average relative frequencies in Figure 12 appear to be more evenly spread

out over the geographical regions than the winter average relative frequencies. The three regions

that have the largest average relative frequencies in the spring are regions 5, 7, and 15: The summer

average relative frequencies in Figure 13 appears to shift over to the right emphasizing geographical

regions 8 through 19. The three largest average relative frequencies in the summer occur at regions
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Figure 12. Average Relative Frequency in Spring
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Figure 13. Average Relative Frequency in Summer
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Figure 14. Average Relative Frequency in Fall

11, 13, and 15. The fall average relative frequencies in Figure 14 appear to shift to the left from

the summer average relative probabilities but is not shifted over to the left as much as the winter

average relative frequencies. The three largest average relative frequencies in the fall correspond to

regions 7, 9, and 11. From the plots of the average relative frequencies for each season, it can be

concluded that there is seasonality in the historical data base.

4.3 Transformations on the Historical and Analytical Data Bases

There are few non-zero relative frequencies in the historical data base. Because the obser-

vations are frequencies, they range between 0.0 and 1.0. The numerous zero p2j, values combined

with the limitation on the range of the relative frequencies will make it very difficult to model

the historical data base. The analytical estimates can be used as a simple filter on the historical

data base. The values for the analytical predictions can be found in Appendix D. This filtering is

accomplished simply by subtracting the analytical estimates from the corresponding relative his-
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torical frequencies. This difference between the historical relative frequencies and the analytical

model predictions can be interpreted as the difference between what was observed to occur what

was predicted to occur.

Before calculating the difference, the analytical probabilities were energy normalized, as op-

posed to statistically normalized, so the probabilities became relative probabilities (statistical nor-

malization changes the highest observation value to 1.0 and the lowest observation value to 0.0 and

adjusts for the other observations in relationship to the highest observation value and the lowest

observation value). Energy normalization transformed the analytical probabilities such that the

sum of the probabilities over the 22 geographical regions summed to one for every time period

using the following equation:

P2j1,trans 22 - (21)
Er=l P2rl

for all j, j = 1,2,..., 22 over all 79 months

where r indexes the geographical regions.

This was done because the historical frequencies are relative frequencies that sum to one for

every time period over the 22 geographical regions. This transformation, in effect, changed the

analytical probabilities to relative analytical probabilities. The values of the normalized analytical

predictions can be found in Appendix E. The differences were calculated by the following equation:

NHA2ji = P211 - P2jl,trans (22)

where NHA is the Normalized Historical frequency minus the Analytical

probability for event type 2 at time block 1
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for all j, j = 1,2,...,22 for all 79 months.

The difference can be interpreted as information of what was observed that was not adequately

represented or explained by the normalized analytical model. For a given month, the difference is

positive in sign when the observed relative frequency for j is greater than the predicted analytical

relative probability for j. This occurs when the analytical model underestimated the relative

frequency of occurrence. For a given month, the difference is negative in sign when the observed

relative frequency is less than the normalized analytical estimate for j. This occurs when the

analytical model overestimated the relative frequency of occurrence. Values of NHA2 j. can be

found in APPENDIX F.

4.4 Step 1: Data Analysis on the Transformed Data Set NHA1 j2

Three-dimensional plots of NHA jj from several perspectives were examined. The three-

dimensional plots can be found in Figure 15, Figure 16, and Figure 17. The x-axis is set up such

that x = I corresponds to January 1985, x = 2 corresponds to February 1985, ..., and x = 79

corresponds to July 1991. The y-axis is set up such that y = 1 corresponds to region 1, y = 2

corresponds to region 2 ... , and y = 22 corresponds to region 22.

The NHA2 j1 values do not appear to be white noise because a 12 month season appears to

be present. For example, region 7 has relatively high NHA21j values during the winter months

(December, January, and February) and relatively low NHA 2jj values during the summer months

(June, July, and August). The winter months that exhibit the relatively high NHA2jj values for

region 7 can be seen when x = 36, x = 48, z = 60, and x = 72. The summer months that exhibit

the relatively low NHA 2jI values for region 7 can be seen when z = 42, x = 43, z = 44, x = 54,

x = 55, x = 56, z = 66, z = 67, x = 68, x = 78, and z = 79.
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Several regions become "prominent". Regions 7 and 11 appear to very "mountainous" having

many relatively large values of NHA2j I. This implies that the analytical model does not adequately

predict regions 7 and 11. Because the majority of the values of NHA 2ji are positive, this implies

that the analytical model's relative estimates greatly underestimate the P2jl values for regions 7

and 11.

4.5 Step 2: Autocorrelation Analysis on NHA2jI

An autocorrelation analysis was conducted on the values of NHA2 j1 . Figure 18, Figure 19,and

Figure 20 are three-dimensional plots of the autocorrelations of NHA2j 1 from several perspectives.

The x-axis is set up such that x = 1 corresponds to lag 1, x = 2 corresponds to lag 2, ..., and x

= 20 corresponds to lag 20. The y-axis is set up such that y =1 corresponds to region 1, y = 2

corresponds to region 2, ..., and y = 22 corresponds to region 22. The values of the autocorrelations

for NHAS 2,j,1 can found in APPENDIX G.

Table 3 summarizes the number of regions that had an autocorrelation value significantly

different from zero at the s lag.

Six of the regions had an autocorrelation value at the 11th and the 12th lags that are sig-

nificantly different from zero. This implies that a 12 month season may be present in the data.

Experts familiar with the historical data base suggest that a cycle of 11 years in present in the

data. Thus, it is assumed that the 12 month season is non-stationary as a result of the 11 year

cycle.

4.6 Transformation on the NHA2 1 Values to Remove Seasonality

Because the 12 month seasonality is assumed to be non-stationary, differencing can be applied

to remove the seasonality. To remove the 12 month season, the values NHA2j1 were differenced

using a 12 month lag. This was accomplished by the following equation:
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Table 3. Significant Autocorrelations of NHA2j1

LAG [NUMBER OF REGIONS

1 13
2 5
3 2
4 0
5 1
6 2
7 2
8 2
9 2
10 3
11 6
12 6
13 3
14 3
15 1
16 0
17 1
18 0
19 1
20 0

NHAS 2jl(t) = NHA2ji(t) - NHA 2jl(t - 12) (23)

where NHAS is the Normalized Historical frequency minus the Analytical

probability deSeasonalized

for all j, j = 1,2,..., 22 for the 79 time periods.

The data set lost 12 degrees of freedom and thus, the data set now contains 67 (79 - 12)

time periods and a total of 1,474 (67 x 22 = 1,474) observations. The values for NHAS 2,j,1 can be

found in APPENDIX H.
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4.7 Slep 1: Data Analysis of the New Transformed Data Set NHAS2J)

Three-dimensional plots of NHASjL from several perspectives were examined and can be

found in Figure 21, Figure 22, and Figure 23. The z-axis is set up such that x = 1 corresponds

to period 1, x = 2 corresponds to period 2,..., and x = 67 corresponds to period 67. x = i now

corresponds to period i, as opposed to a month, because period i represents the difference between

months that are 12 months apart. For example, x = 1 corresponds to January 1986 minus January

1985.

Differencing the data by 12 lags appears to have smoothed the data in the spatial dimension.

In the temporal dimension, the 12 month season appears to still be present. This implies that the

seasonality in the data is not a non-stationary seasonality. Once again, regions 7 and 11 appear to

have relatively high values.

4.8 Step 2: Autocorrelation Analysis on the NHAS 2j1 Values

Three-dimensional plot of the autocorrelations for NHAS 2jI from several perspectives can

bc found in Figure 51, Figure 52, and Figure 53. The values of the autocorrelations of NHAS2,j, 1

can be found in APPENDIX I.

Appendix J contains two-dimensional plots of the autocorrelations for each of the twenty-two

geographical regions.

Table 4 lists the number of regions that had an autocorrelation value significantly different

from zero at each lag. Thirteen regions have a NH 4S2jj autocorrelation value significantlv different

from zero at lag 12, resulting in the conclusion that a 12 month season is present in NHAS 2j l .

NHASjl has seven more regions with an autocorrelation value significantly different from zero at

lag 12 than NHA 2jI. Differencing NHA2jj did not remove the 12 month seasonality, resulting in

the conclusion that the seasonality may be stationary.
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Table 4. Significant Autocorrelations for NHAS 2jj

LAG INUMBER OF REGIONS

1 9
2 4
3 2
4 1
5 1
6 0
7 1
8 1
9 2
10 1
11 1
12 13
13 1
14 1
15 2
16 1
17 1

4.9 Decision on What Data Set to Continue With

At this point, a decision had to made on which data set was the best to continue analysis on.

Is the best data set the NHA2 1 values or the NHASj1 values? Both the NHA2 j1 values and the

NHAS2 j values are seasonal. The NHAS 2j1 values appear to be more smooth or uniform over

the spatial dimension. If one compares the three-dimensional plots of the NHA2 jj values to that

of the NHASjl values, this spatial uniformity can become more evident. The NHA2j1 values

appear to have a "funnel" effect in that the regions used in the distant past appear to be more

spread out over the regions than the more recent months. This "funnelling" does not appear to be

present in the NHAS 2jj values.

Uniformity in the spatial dimension is important in STARMA modelling. If the spatial

dimension is not uniform over time, it becomes necessary to model this spatial non-uniformity.

Thus, the model must account for the non-uniformity in the temporal dimension represented by
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the 12 month season and the funnelling effect in the spatial dimension. In order to keep the model

as simple as possible, the decision to use the NHAS 2j1 values was made.

4.10 Step 2 Continued: Further Autocorrelation Analysis on the NHAS 2j1

Further analysis is required on the autocorrelations of the NHAS2jj values now that the

NHAS 2j1 values will be the data set to model on. Region 15 is the only region that did not pass

the first ad hoc stationarity test. Region 15 did not pass the second ad hoc stationarity test, either.

However, this should not cause any problems since region 15 is a first order neighbor.

A seasonal moving average and/or seasonal autoregressive term is expected due to the 12

month season. This 12-month season is evident in both the three-dimensional plots of NHASjj

values and in the three-dimensional autocorrelation plots. Table 5 lists the number of regions that

had a partial autocorrelation value significantly form zero at each lag.

Table 5. Significant Partial Autocorrelations for NHAS 2Z

(LAG ( NUMBER OF REGIONS

1 9
2 3
3 1
4 0
5 1
6 1
7 2
8 1
9 0
10 0
11 1
12 17
13 2
14 1
15 0
16 1
17 0
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4.11 Step 3: Determination of Target Region, Neighbors, and Spatial Weights

Experts on the historical data base suggested the use of geographical region 11 for the target

region (2). Exogenously from the historical data and the analytical estimates, the experts selected

first order neighbors and second order neighbors to target region 11. The first order neighbors to

target region 11 selected are listed in Table 6. The second order neighbors to target region 11

selected are listed in Table 7.

Table 6. First Order Neighbors; to Target Region 11

FIRST ORDER NEIGHBORS

Region 7
Region 9

Region 13
Region 15
Region 17
Region 19

Table 7. Second Order Neighbors to Target Regi 11

SECOND ORDER NEIGBORS
Region 8
Region 2
Region 3
Region 4
Region 5
Region 6
Region 8
Region 10
Region 12
Region 14
Region 16
Region 18
Region 20
Region 21
Region 22

It is interesting to note that all of the first order neighbors are odd numbered regions. The

experts state that the odd numbered regions usually have higher relative monthly probabilities than

the even numbered regions (2).
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One set of spatial weights is usually selected to represent some physical property among the

22 geographical regions. In the case of the NHAS2 jI values, a strong seasonality exists. In Section

4.2.3 Two Dimensional Plots of the Average Relative Frequencies for Each Season, there were four

distinct average relative frequencies corresponding to each season of the year. Four sets of spatial

weights were selected to represent the spatial weighting between the 22 geographical regions for

each of the four seasons. The four average relative frequencies associated with each season were

selected to be the spatial weights. The average relative frequencies of the first order neighbors to

region 11 for each season were energy normalized so that the first order weights for each season

sum to 1.0

Table 8 lists the weights for region 11 and its first order neighbors for all four seasons.

Table 8. Weights Between Region 11 and its First Order Neighbors
[Region [Winter I Spring I Summer J Fall]

Region 7 0.68 0.33 0.04 0.44
Region 9 0.17 0.12 0.01 0.01
Region 13 0.12 0.10 0.26 0.08
Region 15 0.01 0.15 0.28 0.05
Region 17 0.01 0.05 0.06 0.04
Region 19 0.01 0.09 0.15 0.05

The average relative frequencies of the second order neighbors to region 11 for each season

were also energy normalized such that their sum i one.

Table 9 lists the weights for region 11 and its second order neighbors for all four seasons.

4.12 Step 4: Identification

Because nine regions have an autocorrelation value and a partial autocorrelation value signif-

icantly different from zero at the first lag, it is highly probable that the STARMA model will have

p = 1 and/or q = 1. Because four regions have an autocorrelation value significantly different from

zero at the second lag and three rcgions have a partial autocorrelation value significantly different
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Table 9. Weights Between Region 11 and its Second Order Neighbors
Region Winter Spring [ Summer I Fal

Region 1 0.00 0.00 0.00 0.00
Region 2 0.02 0.00 0.00 0.00
Region 3 0.03 0.02 0.00 0.04
Region 4 0.15 0.09 0.00 0.18
Region 5 0.16 0.18 0.01 0.03
Region 6 0.26 0.09 0.08 0.15
Region 8 0.13 0.16 0.14 0.13

Region 10 0.12 0.22 0.18 0.28
Region 12 0.08 0.11 0.13 0.15
Region 14 0.01 0.01 0.20 0.01
Region 16 0.03 0.06 0.10 0.02
Region 18 0.01 0.06 0.10 0.02
Region 20 0.00 0.00 0.00 0.00
Region 21 0.00 0.00 0.01 0.00
Region 22 0.00 0.00 0.00 0.00

from zero at the second lag, it is probable that the STARMA model will have p = 2 and/or q = 2.

Because thirteen regions have an autocorrelation value significantly different from zero at the 12th

lag and 17 regions have a partial autocorrelation value significantly different from zero at the 12th

lag, it is highly probable that the STARMA model will have sar = 12 and/or sma = 12. All other

p, q, sar, and sma values appear unlikely.

Identification of a STARMA model is usually accomplished by examination of the autocor-

relations and the partial autocorrelations to see which of the two has a tendency to exponentially

decrease and which has a tendency to go to z 'ro fast. Neither the autocorrelations or the partial

autocorrelations exhibit a tendency to exponentially decrease to zero or go to zero fast. As a result,

there is no identification of a STAR, STMA, or STARMA model. The identification is limited to

p 2 and q <2, sar = 12, andsma = 12.

4.12.1 ARMA Model Building of Target Region 11 NHAS 2,11,1 to Identify p and q.

4.12.1.1 Data Analysis of Target Region 11 NHAS 2 ,1 1 ,1. A two-dimensional plot of

N HAS 2jI at geographical region 11 can be found in Figure 27. The x-axis is set up such that z =
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1 corresponds to observation 1, x = 2 corresponds to observation 2, ... , and x = 67 corresponds to

observation 67.
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Figure 27. Geographical Region 11 NHAS 21 1 ,1

From analyzing the plot of region 11, there appears to be no trend in the data. Thus, the

target region data is expected to be stationary. A 12 month season is not apparent from the plot of

geographical region 11 except that the third block of 12 months (z = 25 through z = 36) appears

similar to the fifth block of 12 months (x = 49 through x = 60). The first 12 month block (z =

I through x = 12) and the second 12 month block (x = 13 through x = 24) appear relatively flat

except for one spike at the beginning of each block and one spike at the end.

4.12.1.2 Autocorrelation Analysis of Target Region 11 NHAS 2,1 1 ,1. Figure 28 is a

two-dimensional plot of the autocorrelations of NHASij at Target Region 11. The x-axis is set

up such that x = I corresponds to lag 1, x = 2 corresponds to lag 2,..., and r = 17 corresponds to

lag 17.
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Figure 28. Autocorrelations of Target Region 11 NHAS 2 ,11,1

Figure 29 is a two-dimensional plot of the partial autocorrelations for Target Region 11. The

x-axis is set up such that x =1 corresponds to lag 1, x = 2 corresponds to lag 2, ... , and x =

17 corresponds to lag 17. The values of the partial autocorrelations fof region 11 can be found in

APPENDIX K.

It was determined in section Step 2: Autocorrelation Analysis of the NHAS 2J1 Values that the

data for region 11 was stationary by passing the second stationarity test. Both the autocorrelations

and the partial autocorrelations of NHASjj at target region 11 are significant at the lag 12,

implying a 12 month season.

4.12.1.3 Identification for Target Region 11 NHAS 2 ,11,1. The autocorrelations are

significantly different from zero at lags 1, 2, 12, and 15. The partial aut'.correlations are significantly

different from zero at lags 1 and 12. This would imply the possibility of p :< 2 and q < 2 and a

seasonal term of 12 time periods. Neither the autocorrehtions and the partial autocorrelations
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Figure 29. Partial Autocorrelations of Target Region 11 NHAS2, 11, 1

appear to go to zero fast or exponentially decrease to zero. Thus, it is not possible to identify

whether the model will be an AR, MA, or ARMA model. Because a 12 month season is quite

apparent, a seasonal model is identified. Identified models are all SAR, SMA, and SARMA models

with all combinations of p < 2, q < 2, sar= 12, and sma = 12.

4.12.1.4 Estimation for Target Region 11 NHAS 2,11 ,1. No model specification was

identified because the autocorrelations and the partial autocorrelations did not appear to either go

to zero fast or exponentially go to zero. As a result, the 22 combinations of p 2, q :5 2, sar =

12. and sma = 12 were all estimated.

4.12.1.5 Diagnostic Checking for Target Region 11 NHAS 2,11 ,1 . Table 10 summarizes

the significance of the parameter coefficients in each of the 22 estimated models. A 'S' in the AR

column means that the coefficient of the highest AR order in the corresponding estimated model is

significantly different, from zero at the 90% confidence level. Likewise, a 'S' in the M/ column means
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that the coefficient of the highest MA order in the corresponding estimated model is significantly

different from ero with 90% confidence. A 'S' in the SAR column means that the coefficient of

the SAR(12) term in the corresponding estimated model is significantly different from zero at the

90% confidence level. Likewise, a 'S' in the SMA column means that the coefficient of the SMA(12)

term in the corresponding estimated model is significantly different from zero with 90% confidence.

A 'NS' in th, XR column means that the coefficient of the highest AR order in the cor-

responding estimated model is not significantly different from zero at the 90% confidence level.

Likewise, a 'NS' in the MA column means that the coefficient of the highest MA order in the cor-

responding estimated model is significantly different from zero with 90% confidence. A 'NS' in the

SAR column means that the coefficient of the SAR(12) term in the corresponding estimated model

is not significantly different from zero at the 90% confidence level. Likewise, a 'NS' in the SMA

column means that the coefficient of the SMA(12) term in the corresponding estimated model is

not significantly different from zero with 90% confidence.

A blank space in any column specifies that the coefficient was not applicable.

From 'Table 10, 16 of the 22 estimated models can be thrown out for one of the following

reasons: the coefficient of the highest order of p was insignificant, the coefficient of the highest

order of q was insignificant, tie coefficient of sar(12) was insignificant, or the coefficient of sma(12)

was insignificant.

4.12.1.6 Forecasting for Target Region 11 NHAS 2 ,11,1 . Six of the estimated models

passed the significance portion of diagnostic checking. Table 11 summarizes the /? 2 value and the

SSR for each of the six estimated models that passed the significance portion of diagnostic checking.

whee P2 is the adjusted R2 and

SSR is the sum of the squared residuals.
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Table 10. Significance of the Coefficients for All Estimated ARMA Models for Target Region 11
N HAS 2 j1

~Model IARi MA SAR [SMA

MA(1) S
AR(1) S___
MA(1) 12  S S
AR(1) 12  S S
ARMA(1,1) S NS
ARMA(1,1)0,12  S NS S
ARMA(1,1) 12 ,0 S NS S
ARMA(1,1) 12 ,12  S NS NS S
MA(2) S
SMA(2) 12  S ___ S
AR(2) NS
SAR(2)12  NS S
ARMA(2,1) NS NS
ARMA(2,1) 12,0 NS NS S ___

ARMA(2,1), 1 2  NS NS S
ARMA(1,2) NS NS
ARMA(1,2) 12 ,o NS NS S ___

ARMA(1,2)c,! 2  S NS S
ARMA(2,2) NS NS
ARMA(2,2) 12,o NS NS S ___

ARMA(2,2)o, 1 2  NS NS ___ S
ARMA(2,2) 12 ,12  NS NS NS S

Table 11. Significant ARMA Models for Target Region 11 NHAS 2 ,1 1,1

[ MODEL1 R2I7 SSR
MA(I) 0.164 2.990
AR(1) 0.249 2.654

MA(1) 12  0.339 2.329
AR(1) 12  0.353 1.969
MA(2) 0.239 2.682

LSMA(2) 12  0.407 12.058
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In order to throw out more of the model combinations, the 2 and SSR were examined. The

criterion selected is to maximize the R 2 while minimizing the SSR. The SMA(2)1 2 model, SAR(1) 12

model, and the SMA(1) 12 model have the largest R 2 value. The SAR(1) 12 , SMA(2) 12 model and

the SMA(1) 12 model have the smallest SSR. The value of R2 for the SMA(2) 12 model is 13.3%

better than that of the SAR(1) 12 model, and 16.7% better than that of the SMA(1) 12 . The value

of [2 for the SAR(1) 12 model is 4.0% better than that of the SMA(1) 12 model. The value of SSR

for the SAR(1)12 model is 4.3% better than that of the SMA(2)12 model and is 15.5% better than

that of the SMA(1) 12 model. The SSR value of the SMA(2) 12 model is 1.0% better than that of

the SMA(1) 12 model.

The SMA(2)12 model is clearly superior in terms of maximizing R2 since the value of its

[?
2 is over 13% better than all of the other estimated models that past the significance portion of

diagnostic checking. The AR(1) 12 model and the SMA(2) 12 have SSR values that are less than 5%

different from each other. Both the AR(1) 12 model and the SMA(2) 12 model have an SSR value

that is less than 5% smaller than that of the MA(1) 12 model.

Because the SMA(2) 12 model has the superior R2 value and has a SSR value that is less than

5% different from the AR(1) 1 2 model, the best model to forecast target region 11 is the SMA(2) 12

model specification.

Table 12 lists the coefficients of the terms in the SMA(2) 1 2 model along with the standard

error of the coefficients, the t-statistic of the coefficients, and the two tailed significance of the

coefficients, all rounded to the nearest one-thousandths.

Table 12. SMA(2) 12 model Designation for Target Region 11 NHAS2 ,1 1,1

Variable Coefficient [Std. Error I T-STAT] 2-Tail Sig.

C 0.049 0.022 2.215 0.030
MA(1) 0.434 0.112 3.890 0.000
MA(2) 0.423 0.111 3.811 0.000
SMA(12) -0.067 0.139 -4.808 0.000
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4.12.2 ARMA Model Building of Combined Series to Identify Ap and rnq. ARMA model

building to develop the spatial relationship was conducted on the series of data that contains the

combination of the target region values, the first order values, and the second order values. The

combination series contains 201 observations (67 x 3 = 201). Because the model selected as the

best model for target region 11 was a SMA model, the ARMA model building to develop the spatial

relationship is limited to MA models. Because there are only first and second orders to the data

and the best model for target region 11 was a SMA model, the ARMA model building to develop

the spatial relationship is limited to q values less than or equal to 2.

4.12.2.1 Data Analysis of Combined Series. Figure 30 is a two-dimensional plot of

the combined series. The x axis is set up such that z = 1 corresponds to observation 1 of the

Target Region 11 series, x = 2 corresponds to observation 1 of the weighted sum of the first

order neighbors series, x - 3 corresponds to observation 1 of the weighted sum of the second

order neighbors series, x = 4 corresponds to observation 2 of the Target Region 11 series, x = 5

corresponds to observation 2 of the first order neighbors series, x = 6 corresponds to observation

2 of the second order neighbors series, . . . , x = 199 corresponds to observation 67 of the Target

Region 11 series, x = 200 corresponds to observation 67 of the first order neighbors series, and x =

201 corresponds to observation 67 of the second order neighbors series. The values of the combined

series can be found in APPENDIX 10.

The plot of the combined series does not appear to show any trend. There is no need to

examine the combined series for seasonality since the only thing to be determined is the spatial

relationship.

4.12.2.2 Autocorrelation Analysis of Combined Series. Because this series is a combi-

nation of the three series, stationarity is not necessary. However, examination of the autocorrela-

tions and partial autocorrelations is important to find significant autocorrelations and significant

partial autocorrelations. Because there are 201 total observations in the combined series, it is rec-

67



0.8

0.6

0.4

0.2
Combined

0

-0.2

-0.4-

-0.6 I I I

50 100 150 200
Period

Figure 30. Combined Series of NHAS 2,j,i with Target Region 11

ommended to calculate the autocorrelations and the partial autocorrelations up to lag 51 (20i _\ 4 -

50.25). However, MicroTSP is limited to the calculation of autocorrelations and partial autocor-

relations up to 44 lags. Thus, only the autocorrelations and the partial autocorrelations up to lag

44 were calculated. Figure 31 is a two-dimensional plot of the autocorrelations for the combined

series. The z-axis is set up such that x = I corresponds to lag 1, z = 2 corresponds to lag 2,

and z = 44 corresponds to lag 44. The values of the autocorrelations of the combined series can

be found in APPENDIX M.

Figure 32 is a two-dimensional plot of the partial autocorrelations for the combined series.

The x-axis is set up such that z = 1 corresponds to lag 1, z = 2 corresponds to lag 2,..., and z =

44 corresponds to lag 44. The values of the partial autocorrelations for the combined series can be

found in APPENDIX M.
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Figure 31. Autocorrejations of the Combined Series
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Figure 32. Partial Autocorrelations of the Combined Series
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The autocorrelations are significantly different from zero at lags 3, 6, 9, 24, 36, and 42. The

partial autocorrelations are significantly different from zero at lags 3, 6, 24, 36. All of the lags

that exhibit either an autocorrelation or a partial autocorrelation significantly different from zero

occur at multiples of 3. This is expected since the series was combined from three separate series.

The significant autocorrelation and partial autocorrelation at lag 36 corresponds to the significant

autocorrelation and partial autocorrelation at lag 12 for target region 11.

4.12.2.3 Identification for the Combined Series. No autocorrelation or partial auto-

correlation at lag 1' or lag 2 was significantly different from zero. Despite this fact, the following

models are identified: MA(1) and MA(2).

4.12.2.4 Estimation for the Combined Series. Both identified models were estimated

using Micro TSP.

4.12.2.5 Diagnostic Checking for the Combined Series. Table 13 summarizes the sig-

nificance of the parameter coefficient(s) of the estimated MA(1) and MA(2) model. A "S' in the

MA column means that the coefficient of the highest MA order in the correspoding estimated model

is significantly different from zero with 90% confidence. A 'NS' in the MA column means that the

coefficient of the highest MA order in the correspoding estimated model is significantly different

from zero with 90% confidence.

Table 13. Significance of the Coefficients for All Estimated ARMA Models for the Combined
Series

Model MA
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The coefficient for the MA(2) term in the MA(2) model was not significantly different from

zero and the 90% confidence level. The MA(2) failed to pass diagnostic checking and as a result,

the MA(2) model is removed from consideration.

4.12.2.6 Forecasting for the Combined Series. The R2 value for the MA(1) model on

the combined series is 0.014. The SSR value for the MA(1) model on the combined series is 5.076.

Table 14 lists the coefficients of the terms in the MA(1) model along with the standard error of the

coefficients, the t-statistic of the coefficients, and the two tailed significance of the coefficients, all

rounded to the nearest one-thousandths.

Table 14. MA(1) Model for the Combined Series

Variable Coefficient Std. Error T-STAT 2-Tail Sig.

C 0.029 0.011 2.594 0.009
MA(1) -0.138 0.0709 -1.951 0.051

The two tailed significance values show that the coefficients for the terms in the MA(1) model

are significant at the 90% confidence level.

The MA(1) model is the best and most parsimonious model to represent the spatial relation-

ship between the target region, the first order terms, and the second order terms.

4.12.3 Summary of Identification. The purpose of building an ARMA model on the target

region was to identify p, q, sar, and sma for the STARMA model. The best ARMA model for

target region 11 was SMA(2)1 2 resulting in an identified p = 0, q = 2, sar = 0, and sma = 12.

The purpose of building an ARMA model on the combined series was to determine the

spatial relationships between the target region and its neighbors. The MA(1) model was the best

and most parsimonious model of the combined time series. The q value of the combined time series

corresponds to the mk value identified for the STARMA model. The value of mk = 1 is identified

for the STARMA model. The identified STARMA model is SSTMA(21,1 )1 2.
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4.13 Step 5: Estimation

MicroTSP was used to estimate the identified SSTMA models.

4.14 Step 6: Diagnostic Checking

Table 15 lists the coefficients of the terms in the SSTMA(2 1,1)12 model along with the standard

error of the coefficients, the t-statistic of the coefficients, and the two tailed significance of the

coefficients, all rounded to the nearest one-thousandths.

Table 15. The SSTMA(2 1,1)12 Model

Parameter Coefficient Std. Error T-STAT 2-Tail Sig.

C 0.027 0.009 3.031 0.002
01,0 0.424 0.064 6.594 0.000
01,1 -0.160 0.064 -2.498 0.012
02,0 0.396 0.064 6.190 0.000

02,1 -0.131 0.064 -2.037 0.042
sma(12) -0.586 0.078 -7.486 0.000

The two tailed significance shows that all of the coefficients for the SSTMA(2 1,1 )12 model

are significantly different from zero at the 90% confidence level. The SS'I'MA(2 1,1) 12 passed the

significance portion of diagnostic checking.

Figure 33 is a two-dimensional plot of the residuals from fitting the SSTMA(2 1,1)12 model

to the combined series. The x-axis is set up such that x = 1 corresponds to observation 1, x = 2

corresponds to observation 2, ..., and x = 201 corresponds to observation 201. The values of the

residuals can be found in APPENDIX N.

Figure 34 is a two-dimensional plot of the residual autocorrelations from fitting the SSTMA(2 1,1)12

model to the combined series. The z-axis is set up such that x = 1 corresponds to lag 1, x = 2

corresponds to lag 2, ..., and x = 44 corresponds to lag 44. Only the autocorrelations at the first 44

lags were calculated, as opposed to the first 51(2O1 = 50.25) lags, because MicroTSP is limited to
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Figure 33. Residuals from Fitting the SSTMA(2 1,1)12 Model to the Combined Series of Target
Region 11

calculating autocorrelation values at the first 44 lags. The values of the residual autocorrelations

can be found in APPENDIX 0.

Figure 35 is a two-dimensional plot of the residual partial autocorrelations from fitting the

SSTMA(2 1,1)1 2 model to the combined series. The x-axis is set up such that x = 1 corresponds

to lag 1, x = 2 corresponds to lag 2, ... , and x = 44 corresponds to lag 44. Only the partial

autocorrelations at the first 44 lags were calculated, as opposed to the first 51(2-1 = 50.25) lags,

because MicroTSP is limited to calculating partial autocorrelation values at the first 44 lags. The

values of the residual partial autocorrelations can be found in APPENDIX 0.

From examining Figure 33 of the residuals, there does not appear to be any trend or pattern

in the residuals. The Q-statistic of 27.885 falls below the Q-critical value indicating the residuals

are stationary. Only one autocorrelation value was significantly different from zero. This significant

autocorrelation value occurred at the 9th lag. None of the partial autocorrelations were significantly
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Figure 34. Residual Autocorrelations from Fitting the SSTMA(2 1,1 )12 Model to the Combined
Series of Target Region 11

different from zero. The SSTMA(2 1,1) 12 model passed the white noise residuals portion of diagnostic

checking.

The SSTMA(2 1,1 ) 12 model passed both portions of the diagnostic checking and thus, the

SSTMA(2 1,1) 12 model adequately describes and represents the combined series.

4.15 Step 7: Forecasting

The SSTMA(2 1,1) 12 model has a [
2 value of 0.382 and a SSR value of 3.115. Tile R 2 value

can be interpreted as 'the following: 38.2% of the variance in the combined series is explained by

the model.

The SSTMA(2 1,1 )1 2 model is the best and most parsimonious model to forecast the combined

series. As a result, SSTMA(21,) 12 is the best and most parsimonious model to forecast the values

of NHAS 2 j,I for target region 11.
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Figure 35. Residual Partial Aut correlations from Fitting the SSTMA(2 1,1)12 Model to the Com-
bined Series of Target Region 11

The SSTMA(2 1,1)12 model can be written as the following equation:

2 rn

X2,11,1(t) = :- ,kIWE(t - k) - Orna,I=o Wo(t - 12) + c(f) (24)
k=1 1=0

Equation 24 for the SSTMA(2 1,1)12 model can be rewritten as:

2,11.1(t) = -0o,oWoE(t-1)-oiiWl (t-1)-0 2,OWo(t-2)-0 2,l V(t-2)-0ma,I=oWo(t-12)+(t)

(25)

If the coefficients Oki of the parameters are inserted and knowing that Wo = I, Equation 25

can be rewritten as:
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z 2 ,11,1(t) = 0.27-0.424t(/- 1)+0.160Wi(t - 1)-0.396(t-2)+0.131W1(t-2)+0.586E(t- 12)+C(t)

(26)

Figure 36 is ; two-dimensional plot of the actual and predicted values of NHAS 2jl for target

region 11 using the SSTMA(2 1,1) 12 model. The values of the predictions for NHAS 2,11,1 can be

found in APPENDIX P.
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Figure 36. Actual and Predicted Values of NHASjl for Target Region 11

Many transformations are required on the fitted and forecasted NHASjI values to return to

the original historical data. The first transformation that is required converts the fitted NHAS 2j,

values to fitted NHA 2jl values and accounts for the 12 month lag that was taken in an attempt

to remove seasonality. The second transformation subtracts the corresponding relative analytical

probabilities 2j 1 from the fitted NHA2j1 values. This results in 52j 1- It is not possible to forecast

i2j into the future without knowing the corresponding analytical 02j I value.
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Figure 37 is a two-dimensional plot of the actual and predicted values of the relative frequen-

cies of geographical region 11 from January 1985 through July 1991 after all of the transformations

have been done to return the forecasting NHAS2jI values for target region 11 back into forecasted

values for the historical relative frequencies. The SSR value for the predictions is 2.37. The values

of the predictions P2,11,1 can be found in APPENDIX Q.
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Figure 37. Actual X 2jl and Predicted Values 52jk of Geographical Region 11

As can be seen in Figure 37, there are a few predictions iijk of geographical region 7 that

are negative in value. Since a negative probability is not possible, it is necessary to transform

all probabilities with a negative value to probabilities with a zero value. Transforming all the

negative probability predictions to zero probability predictions, decreased the SSR value to 2.34.

This equates to only a 1.27% decrease in the SSR value, which is not a significant decrease. Fig-

ure refAPHIST11T is a two-dimensional plot of the actual and transformed predicted values of

geographical region 11. The values of the transformed predictions P2,11,1 can be fouund in AP-

PENDIX Q.
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Figure 38. Actual X2jl and Transformed Predicted Values 2jk of Geographical Region 7

4.16 Robustness of the Model

Robustness measures the applicability of the best and most parsimonious model selected for

target region 11 to the other geographical regions. To check for the robustness of the target region

11 model, the specified njodl SSTMA(2 1,1 ) 12 is fit to geographical region 7 . To fit the specified

model to geographical region 7, the univariate STARMA model building procedure is followed. The

data for target region 7 NHAS 2 ,j,1 will be used to fit the predictions and then transformed back

into the form of the original data.

Geographical region 7 now become the target region. Since geographical region 7 was selected

to be a first order neighbor of target region 11, it is reasonable to select region 11 as a first order

neighbor to target region 11. It is reasonable to select the first order neighbors for target region 11

as the first order neighbors for target region 7. Likewise, it is reasonable to select the second order

neighbors of target region 11 as the second order neighbors of target region 11. Table 16 lists the
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first order neighbor regions to target region 7. Table 17 lists the second order neighbor regions to

target region 7.

Table 16. First Order Neighbors to Target Region 7

FIRST ORDER NEIGHBORS
Region 9

Region 11
Region 13
Region 15
Region 17
Region 19

Table 17. Second Order Neighbors to Target Region 7

SECOND ORDER NEIGHBORS]

Region 1
Region 2
Region 3
Region 4
Region 5
Region 6
Region 8
Region 10
Region 12

Region 14
Region 16
Region 18
Region 20
Region 21
Region 22

The only difference between the first order neighbors of target region 7 and the first order

neighbors of target region 11 is that region 11 is a first order neighbor of target region 7 and that

region 7 is a first order neighbor of target region 11. The second order neighbors of target region

7 are identical to that of target region 11.

The weights for the first order neighbors and second order neighbors of target region 7 were

selected in the same fashion of that for target region 7. The first order weights are energy normalized

for each season so that the weights sum to 1.0. Because the second order neighbors of target region
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7 are identical to that of target region 11, the energy normalized second order weights of target

region 11 were used for target region 7. Table 18 lists the weights for region 7 and its first order

neighbors for all four seasons. Table 19 lists the weights for region 7 and its second order neighbors

for all four seasons.

Table 18. Weights Between Region 7 and its First Order Neighbors
Region Winter [ Spring I Summer [Fall

Region 9 0.31 0.35 0.14 0.39
Region 11 0.46 0.16 0.39 0.37
Region 13 0.20 0.13 0.16 0.09
Region 15 0.01 0.19 0.17 0.05
Region 17 0.01 0.06 0.04 0.04
Region 19 0.01 0.11 0.10 0.06

Table 19. Weights Between Region 7 and its Second Order Neighbors
Region Winter Spring Summer Fall

Region 1 0.00 0.00 0.00 0.00
Region 2 0.02 0.00 0.00 0.00
Region 3 0.03 0.02 0.00 0.04
Region 4 0.15 0.09 0.00 0.18
Region 5 0.16 0.18 0.01 0.03
Region 6 0.26 0.09 0.08 0.15
Region 8 0.13 0.16 0.14 0.13
Region 10 0.12 0.22 0.18 0.28
Region 12 0.08 0.11 0.13 0.15
Region 14 0.01 0.01 0.20 0.01
Region 16 0.03 0.06 0.10 0.02
Region 18 0.01 0.06 0.10 0.02
Region 20 0.00 0.00 0.00 0.00
Region 21 0.00 0.00 0.01 0.00
Region 22 0.00 0.00 0.00 0.00

The combined series for target region 7 was developed in the same fashion that the combines

series for target region 11 was developed. Figure 39 is a two-dimensional plot of the combined

series of target region 7. The values of the combined series with target region 7 can be found in

APPENDIX R.
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Figure 39. Combined Series of NHASjjl with Target Region 7

The SSTMA(2 1,1)12 model specified using target region 11 was fit to the combined series of

target region 7. Figure 40 is a two-dimensional plot of the residual autocorrelations from fitting

the specified SSTMA(2 1,1 ) 12 model to the combined series of target region 7. Figure 41 is a two-

dimensional plot of the residual partial autocorrelations from fitting the specified SSTMA(2 1,1)12

model to the combined series of target region 7. Figure 42 is a two-dimensional plot of the actual

and predicted values of target region 7 using the SSTMA(2 1,1 )12 model specified from target region

11. Figure 43 is a two-dimensional plot of the actual and predicted values of the historical data

of target region 7 from fitting the specified SSTMA(2 1,1)12 model to the combined series, i ,arget

region 7. The SSR value for the predicted probabilities is 5.01.

It is obvious from examing Figure 40 and Figure 41, none of the residual autocorrelations

or residaul partial autocorrelations were significantly different from zero flie Q-statistic for the

residual autocorrelations was 27.885. Because the autocorrelations and the partial autocorrelations
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Figure 40. Residual Autocorrelations from Fitting the SSTMA(2 1,1) 12 Model to the Combined
Series of Target Region 7

are not significantly different from zero, and the Q-statistic is smaller than the critical Q-value, it is

reasonable to assume that the residuals are white noise. The values of the residual autocorrelations

and the residual partial autocorrelations from fitting the specified SSTMA(2 1,1) 12 model to the

combined series of target region 7 can be found in APPENDIX S.

Figure 42 is a two-dimensional plot of the actual and predicted values of target region 7 using

the SSTMA(2 1,1) 12 model specified from target region 11. Figure 43 is a two-dimensional plot of

the actual and predicted values of the historical data of target region 7 from fitting the specified

SSTMA(21 ,1) 12 model to the combined series of target region 7. The SSR value for the predicted

probabilities is 5.01. The values of the fitted NHAS 2,7,1 can be found in APPENDIX T. The values

of the predicted P32,7,1 can be found in APPENDIX U.
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Figure 41. Residual Partial Autocorrelations from Fitting the SSTMA(2 1,1) 12 Model to the Com-
bined Series of Target Region 11
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Figure 42. Actual and Predicted Values of NHASjI for Target Region 7
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As can be seen from Figure 43, there are several predicted probabilities that are negative in

sign. Figure 44 is a two-dimensional plot of the predicted probabilities after all negative predicted

probabilities were transformed to zero probabilities. The transformation on the negative predicted

probabilities lowered the SSR from 5.01 to 4.47, resulting in a 10.8% decrease in the SSR. The

values of the transformed predictions can be found in APPENDIX U.
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Figure 44. Actual X 2j1 and Transformed Predicted Values Pi2jk of Geographical Region 7

Next, the an SSTMA(2 1,1)I model was estimated on the combined series of target region 7.

Table 20 lists the coefficients of the terms in the SSTMA(2 1,1)12 model along with the standard

error of the coefficients, the t-statistic of the coefficients, and the two tailed significance of the

coefficients, all rounded to the nearest one-thousandths.

The two-tailed significance of the coefficient 02,0 is 0.611, indicating that the coefficient

is not significantly different from zero at the 90% confidence level. As a result, it is reason-

able to conclude that SSTMA(2 1,1)12 model is not the best and most parsimonious model des-
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Table 20. The Identified SSTMA(2 1,1)12 Model Estimated on Target Region 7

Parameter Coefficient Std. Error T-STAT 2-Tail Sig.

C 0.023 0.010 2.423 0.015
01,0 0.297 0.064 4.613 0.000
01,1 -0.147 0.064 -2.281 0.023
02,0 0.033 0.065 0.509 0.611
02,1 0.267 0.064 4.160 0.000
sma(12) -0.483 0.073 -6.631 0.000

ignation for target region 7. The best and most parsimonious model designation for target re-

gion 7 may be SSTMA(2 1,0)12. It would not be inappropriate to model target region 7 using a

SSTMA(2 1,1)12 model designation. However, it would be inappropriate to model target region 11

using a SSTMA(2 1,0)12 model designation. The 02,0 coefficient is a significant coefficient in describ-

ing and representing target reion 11 and is not a significant coefficient in describing and representing

target region 7. Keeping the 02,0 term in the target region 7 model will not detrimentally effect

the predictions since the coefficient is not statistically different from zero. However, removing the

02,0 term in the target region 11 model will detrimentally effect the predictions. In conclusion, the

SSTMA(2 1,1) 12 designation may be used to model both target region 7 and target region 11 but

the SSTMA(2 1,0)12 designation may not be used to model both target region 7 and target region

!1..

The values of the coefficients of the target region 11 estimated SSTMA(2 1,1)12 model and that

of the target region 7 estimated SSTMA(2 1,1) 12 model were different. Table 21 lists the amount

that the parameter coefficients between target region 7 and target region 11 varied.

Because there is such a large percent difference between the coefficients of the estimated

target region 7 model and the estimated target region 11 model, it is reasonable to conclude that

the estimated SSTMA(2 1,1 )12 model for target region 11 should not be used to make predictions

for target region 7. However, the SSTMA(2 1,1)12 model designation may be used to predict target

region 7.
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Table 21. Percent Difference Between the Parameter Coefficients of the Target Region 7 Es-
timated SSTMA(2 1 ,1)12 Model and the Target Region 11 Estimated SSTMA(2 11 )12
Model

Parameter Coefficient Difference

C 14.8%
01,0 30.0%
01,1 8.1%

02,0 91.7%
02,1 149.1%
sma(12) 17.6%
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V. Intervention Techniques That May Predict Pijk

5.1 Introduction

A time series of observations can sometimes be effected by external events, commonly referred

to as "interventions" (1:355). An example of an intervention is a doctrinal or policy change (7).

Most interventions result in either a shift in the mean of the time series or a shift in the trend of

the time series (1:355). For purposes of this report, a shift in the mean of the time series will be our

focus. This shift in the mean can occur in various forms. Common forms of this shift include step

functions where the mean changes abruptly, ramp functions where the mean gradually changes in

a linear fashion, and exponential functions where the mean changes in an exponential fashion (7).

The form of the shift may even be a combination of different functions (7).

A shift in the mean of the relative probabilities for a given geographical region may be affected

by some intervention. It must be remembered however, that the probabilities are relative proba-

bilities and must sum to one. Thus, when the mean of the relative probabilities for a geographical

region decreases, the mean relative probability for at least one different geographical region must

increase. The opposite is true that when the mean relative probability for a geographical region

increases, the mean relative probability for at least one different geographical region must decrease.

Classical statistics require the use of a control group that is not effected by the intervention

(3:651). Such a control is not practical to determine a change in a mean value. It is common r-actice

to use a Student's t-distribution to test for a change in a mean value (1:355). Unfortunately, the

Student's t-distribution assumes independent observations and that the change in the mean value

can be represented by a step function (1:355). There is usually a correlation, or dependence, among

successive data observations in a time series (1:355). Also, a step function may not model the change

in the mean (1:355). As a result, the Student's t-test is not applicable for intervention analysis in

time series data and no quantitative measure of effect of an intervention can be obtained (3:651).
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There are several methods that can model interventions to the historical data set to produce

estimates of the relative probability of an event type i occurring at geographical region j at time of

day k. This chapter discusses several techniques that mrf be appropriate to model interventions and

predict Pijk. Intervention analysis is the classical method for dealing with external events that effect

a time series or a process. There are instances when other methods are preferred. This can occur

for several reasons. There may be no experts in the field. The experts may not know the answers to

the analyst's questions. The experts may not want to answer the analyst's questions. The analyst

may not have the time or the resources to conduct a full and complete intervention analysis.

Several techniques other than intervention analysis can be applied to account for interventions:

simple exponential smoothing, adaptive response rate exponential smoothing, Kalman filtering,

and Multiattirbute Utility Functions. The purpose of this chapter is twofold:

(1) To discuss the methodologies behind each of these intervention methods.

(2) To compare and contrast them.

5.2 Intervention Analysis

When using intervention analysis, a transfer function is generally used to model the effects

of an intervention (7). Box and Tiao (1975) use a transfer function-noise model that can describe

the effects of an intervention on a time series in the following manner:

Y(t) = v(B)I(t) + z(t) (27)

where Y(t) is the time series at time t,

v(B) is a function that allows for the effect of the intervention,

I(t) is the indicator sequence reflecting the absence and presence of the

intervention, and

89



z(t) is the noise component (1:355).

1(t) is usually a dichotomous variable taking on values of 0 or 1 depending on the presence

of the intervention. It is assumed that the noise term z(t) may be modelled by an ARMA process

which may be seasonal (3:654). According to Abraham and Ledolter, it is assumed that before the

intervention has occurred, the time series can be modelled using the following:

E[Y(t)] = z(t) (28)

The intervention analysis model in Equation 27 assumes that the time series model parameters

are the same before and after the intervention (1:355). The model also assumes that the intervention

can be represented as an additive effect of the dichotomous variable I(t) on the noise level (3:654).

Several difficult portions of intervention analysis are:

(1) Determining what external events are interventions to the time series.

(2) Determining if and when an intervention occurs.

(3) Determining exogenously the v(B) function.

As mentioned before, the v(B) function can be a step function, ramp function, exponential func-

tions, or a combination.

A technique called factor analysis can be applied to determine what external events are likely

to intervene on the time series. We are interesting in determining what type of intervention is likely

to occur that will drastically change the mean value of the time series. A survey given to experts

will produce the doctrinal information required.

In order to discuss the methodology of factor analysis, let's suppose that there were nine

expert responses to the survey. It is assumed that each expert has approximately the same amount

of background and experience. Without this assumption, it would be necessary to weight the results
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from the survey so that responses from experts with more experience will be weighted more heavily.

Let's say that all nine experts said that the subject of interest being modelled never changes due

to Event A, Event B, or Event C. Let's suppose there was at least one expert who responded that

there is a change in the subject of interest based upon a change in the following:

1. Event D.

2. Event E.

3. Event F.

4. Event G.

5. Event H.

Using the results of the nine surveys, a design matrix X of rank n x m can be created to

represent the information where Xij denotes the entry of the i row in the j column for i = 1,. . ., n

and j 1, . . ., m, where n is the number of expert respondents and m is the total number of

potential interventions. In this case, n = 9 and m = 5. Xij = 1 if expert i thinks that a change in

j will result in a change in the subject of interest being modelled. The design matrix is:

I 1 1 0 0

1 0 1 0 0

1 0 1 0 1

1 1 1 0 1

X= 1 1 0 0 0

0 0 0 0 0

0 1 1 1 1

1 0 0 1 0

1 0 1 1 1
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The dependent Y vector has 9 elements. Y = 1 if experti thinks that changes in the subject

of interest occur. The factor analysis has been structured to answer the following question:

Given an external event i has occurred, what is the probability that the external event
will intervene and result in a change in the observations?

To calculate the probability that intervention i (for i = 1, ..., 5) can cause a change in the

subject of interest, a multiple regression is performed. The serious problem of near singularity will

arise if the Y vector contains only values of 1 or only values of 0. Let's suppose than that expert 6

stated that changes in the subject of interest never occur. This is represented by Y6 = 0 and

X6j 0 0 0 0 0 ). Thus, YT = (1 1 1 0 1 11).

The multiple regression was run on MicroTSP. The multiple regression model can be written

as the following:

Y .074 + .606z + .170z2 + .234z3 + .394z4 + .053z5 (29)

where Y = 1 if a change in the subject of interest occurs,

Y = 0 if no change in the subject of interest occurs,

z, = 1 if a change in EVENT D occurs,

z= 0 if no change in EVENT D occurs,

Z= 1 if a change in EVENT E occurs,

Z2= 0 if no change in EVENT E occurs,

Z= I if a change in EVENT F occurs,

Z3 =0 if no change in EVENT F occurs,

Z4= 1 if a change in EVENT G occurs,

Z= 0 if no change in EVENT G occurs,
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Z5 = 1 if a change in EVENT H occurs,and

Z5 = 0 if no change in EVENT H occurs.

A coefficient can be interpreted as the probability of the subject of interest changing given

that the corresponding event has occurred.

Table 22 shows the coefficient, t-statistic, and 2-tailed significance of each corresponding

variable, all rounded to the nearest one-thousandths.

Table 22. Intervention Analysis Multiple Regression Output

Variable Coefficient] t-stat [ 2-Tail Sig.
C 0.074 0.491 0.657

X1 0.606 4.367 0.022

X2 0.170 1.579 0.212

X3 0.234 1.502 0.230
X4 0.394 2.835 0.066
X5 0.053 0.373 0.734

If we assume an or-value of 0.05, it becomes necessary to remove £2, X3, X4, and X5 from

the model since these four variables are statistically insignificant, according to the t-test. We can

conclude that the only external event that can be considered as an intervention is a change in

EVENT D. Likewise, if we assume an a-value of 0.10, it becomes necessary to remove X2, X3, and

x5 from the model. We can conclude that there are two external events that are interventions:

(1) A change in EVENT D.

(2) A change in EVENT G.

If we stay with an a-value of 0.05, the model now looks like the following:

Y = 0.074 + 0.606z, (30)
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From Equation 30, it can be stated that given a change has occurred in EVENT D, there is

a 60.6% chance that the subject of interest will change. This concludes the factor analysis portion

of intervention analysis.

The next portion of intervention analysis is determining whether an intervention occurred

and if so, when did it occur. There is one recommended way to determine whether and when an

intervention occurred in the past that involves two steps:

1. Examining the data plotted over time .

2. ARMA model fitting followed by examination of the residuals and their

autocorrelations and partial autocorrelations.

In order to explain the methodologies to evaluate whether and when an intervention occurred,

let's suppose we have a univariate time series such that each observation represents the total monthly

number of changes in the subject of interest. A possible change in the relative probabilities pijk can

be a doctrinal or policy change that forces events that used to occur in a geographical region to now

occur in a different geographical region. Table 23 lists the example subject of interest univariate

time series.

It should be noted that the observations of the time series was conjured up to explain inter-

vention analysis. The observations did not come from the historical data base or the analytical

data base discussed in earlier chapters.

It is assumed that an external event that has a relatively high probability of effecting the

time series hac occurred. For purposes of demonstration, the external event will be the start of the

Gulf War in January, 1991.

The first step is examination of a plot of the time series. Sometimes, a change in the mean is

observable by simply looking at a plot of the time series. Figure 45 is a two-dimensional plot of the

monthly number of changes in the subject of interest from August 1989 to July 1992. The x-axis
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Table 23. Subject of Interest Time Series

Month and Year Number of Changes in Observations
August 1989 25
September 1989 22
October 1989 24
November 1989 27
December 1989 21
January 1990 24
February 1990 22
March 1990 26
April 1990 27
May 1990 31
June 1990 25
July 1990 28
August 1990 27
September 1990 25
October 1990 23
November 1990 24
December 1990 24

January 1991 27
February 1991 28
March 1991 42
April 1991 57
May 1991 59
June 1991 68
July 1991 71

August 1991 97

September 1991 102
October 1991 93
November 1991 99
December 1991 100
January 1992 99
February 1992 99
March 1992 100
April 1992 100
May 1992 101
June 1992 100
July 1992 99
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is set up such that x = 1 corresponds to August 1989, x = 2 corresponds to September 1989....,

and x = 36 corresponds to July 1992.
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Figure 45. Monthly Number of Changes in the Subject of Interest

The monthly number of the subject of interest changes appears to fluctuate around 25 before

the Gulf War began in January 1991. After January 1991, there appears to be an increase in the

monthly number of the subject of interest changes and then a levelling off around July 1991 or

August 1991. After August 1991, the monthly number of changes in the subject of interest appear

to fluctuate around 100.0. The mean of the monthly number of changes in the subject of interest

before January 1991 is 25.0. After January 1991, the mean is 84.111. From an examination of the

time series plotted over time and the means of the number of monthly subject of interest changes

over time, there appears to be an effect on the time series.

I he next step is accomplished by fitting the time seris- with an ARMA model (3:655). It

should be noted that the estimates created by this model are the z(t) terms for the Box-Jenkins
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transfer function model specified earlier in Equation 27. An ARMA model is fit using observations

dating back before the intervention presumably occurred. Using MicroTSP, the best and most

parsimonious ARMA model is an AR(1) model with a constant value of 24.984 and an AR(1)

coefficient of 0.202. The analyst fits the specified AR(1) model to the entire time series. If the

residuals exhibit no special trend or characteristic and there is no significant increase in their

standard error, then no significant intervention has occurred. Figure 46 is a two-dimensional plot

of the actual and predicted values of the subject of interest using an AR(1) model that was specified

using the observations that occurred before the start of the Gulf War. The x-axis is set up such

that x = 1 corresponds to August 1989, x = 2 corresponds to September 1989,..., and x 36

corresponds to July 1992.
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Figure 46. Actual and Predicted Values of the Subject of Interest Using an AR(1) Model

Figure 47 is a two-dimensional plot of the residuals from fitting the subject of interest with an

AR(1) model. The z-axis is set up such that x = 1 corresponds to August 1989, x = 2 corresponds

97



to September 1989,..., and x = 36 corresponds to July 1992. The plot of the residuals shows that

the AR(1) model does not fit the time series after January 1991.
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Figure 47. Residuals from Fitting the Subject of Interest with an AR(1) Model

Figure 48 is a two-dimensional plot of the autocorrelations of the residuals from fitting the

subject of interest with an AR(1) model. It is obvious from Figure 48 that after January 1991, all

of the residuals are significantly different from zero. The autocorrelations follow a definite pattern.

The autocorrelations for the first 11 lags are all positive and the autocorrelations for lags 13 through

20 are all negative.

Figure 49 is a two-dimensional plot of the partial autocorrelations of the residuals from fitting

the subject of interest with an AR(1) model.

The analyst now determines the best and most parsimonious ARMA model for the entire

time series as an AR(1) model with a constant value of 290.306 and an AR(1) coefficient of 0.995.
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Figure 48. Autocorrelations of Residuals from Fitting the Subject of Interest with an AR(1)
Model

It can be concluded that the Gulf War is an intervention on the monthly number of changes

in the subject of interest. The following led to the conclusion that the Gulf War is an intervention:

1. The plot of the time series.

2. The differences in coefficients of the AR(1) model that was determined from

the data dating back before the Gulf War and the AR(1) model determined

from all of the data.

3. The plot of the residuals of the time series fitted with the AR(1) model

determined from the data before the Gulf War.

4. The plots of the residual autocorrelations and the residual

partial autocorrelations.

The next portion of intervention analysis is estimating the v(B) function of all interventions.

The v(B) function must be calibrated exogenously from the data. One of the ways to calibrate the
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Figure 49. Partial Autocorrelations of Residuals from Fitting the Subject of Interest with an

AR(1) Model

v(B) function is to apply the fractile method which involves questioning a group of experts on the

form and shape of the v(B) function. The fractile method is commonly used to measure utility and

the v(B) function can be modelled as a utility function. Here is an example of a generalized v(B)

questionnaire.

5.3 Generalized Fractile Method Survey

5.3.1 Note. This survey is a generalized survey using the fractile method. The analyst

must fill in all areas of this generalized survey in parenthesis (). For example, everywhere there is

(INTERVENTION), the analyst must fill in the specific intervention that is being mentioned.

5.3.2 Purpose of this Study. In this section, it is important that the analyst states why the

survey is being conducted and who the survey is being conducted for. The fractile approach should

be mentioned and briefly described.
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5.3.3 How This Survey Will Be Used. In this section, the analyst should describe how the

responses from this survey will be used. The calibration of the v(B) function using the results

should be mentioned. It may also prove useful to state why the v(B) function must be calibrated.

5.3.4 Insiructions Regarding This Survey. In this section, the analyst should state some-

thing like the following: Answer all questions to the best of your ability. If you are not sure about

an answer or can not answer due for any given reason, state so (i. e., "To the best of my knowledge",

"I don't know", et cetera).

If you have any questions regarding this survey, my name is (NAME) and I can be reached

at. (PHONE NUMBER). My office is (OFFICE).

Your Name and Rank:

Your Office:

Experience:

It has been determined that (INTERVENTION) is an external event that has an effect on

(SUBJECT OF INTEREST). When is (INTERVENTION) likely to happen?

When has (INTERVENTION) occurred in the past?

When (INTERVENTION) occurs, what type of effect does it have on (SUBJECT OF IN-

TEREST)? In other words, will the effect resemble a ramp function, step function, exponential

function, or a combination of functions?

When (INTERVENTION) occurs, will the mean value of (SUBJECT OF INTEREST) in-

crease, decrease, or both?

When (INTERVENTION) occurs, what is the most likely value of (SUBJECT OF INTER-

EST)?
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The last time (INTERVENTION) occurred, what was the value of (SUBJECT OF INTER-

EST)?

After (INTERVENTION) occurs, what is the (MAXIMUM / MINIMUM) value that (SUB-

JECT OF INTEREST) will be?

What is the absolute difference between the (MAXIMUM / MINIMUM) value of (SUBJECT

OF INTEREST) and the value of (SUBJECT OF INTEREST) when it last occurred? If (INTER-

VENTION) has never occurred, substitute "most likely value of (INTERVENTION)" for "value C,

(INTERVENTION) when it last occurred."

What is that absolute value divided by N? (N is determined by the analyst and is equal to

1 plus the number of intermediate values to be used in the calibration of v(B))

When is the (SUBJECT OF INTEREST) most likely to (INCREASE / DECREASE) to

(INTERMEDIATE VALUE)?

NOTE: The (INTERMEDIATE VALUE)s can be calculated by multiplying the value of the

absolute value divided by N with values between 2 through N - 1.

Repeat the last question for all intermediate values.

When is the (MAXIMUM SUBJECT OF CHANGE) most likely to occur?

Thank you for your time and effort.

5.4 Fractile Method

Since we assumed an a-value of 0.05, the only intervention that is statistically significant is

a change between EVENT D. Let's assume that we are interested in calibrating v(B) as the total

number of changes in observations as the Gulf War broke out in January 1991.

The first step in calibrating the v(B) function is to determine what form of v(B) is most

likely to occur starting in January of 1991 by examining a plot of the time series of interest (7).

102



From examination of the time series, let's assume that the analyst believes that the form of v(B)

is either an exponentially increasing function or a ramp function.

On average, 25 changes in the subject of interest were made before January. The analyst

asks the experts what is the maximum monthly number of changes in the observations that will

occur after the Gulf War started. The experts will probably disagree on the exact number, but. the

analyst should not allow the experts to discuss it. Rather, the analyst should weight the response

of each individual expert as a function of the expert's background and knowledge of changes in the

subject of interest. For example, an analyst would not want to place a high weight on the responses

of expert 6 because that expert erroneously stated that no changes ever occur in the observations.

The same nine experts that helped the analyst perform the factorial analysis are used, but this

time, it is assumed that the experts differ in their background and knowledge of the subject of

interest. Table 24 lists the rankings of the experts, where 1 is the lowest rank and 9 is the highest

rank.

Table 24. Rankings of Nine Experts

Expert Rank

1 3
2 7
3 2
4 6
5 8
6 1
7 4
8 9
9 5

A simple way to apply the ranks is the following:

1. Multiply an expert's response by his ranking.

2. Add up all the weighted responses.

3. Divide the weighted response by the sum of the ranks (1, 2, ... , 9).
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Table 25 shows the experts' responses for the maximum monthly number of changes in the

subject of interest that will occur after the Gulf War started.

Table 25. Experts' Responses to Maximum Monthly Number of Changes

Expert [ Response [ Rank Weighted Response

1 90 3 270
2 120 7 840
3 110 2 220
4 100 6 600
5 85 8 680
6 130 1 130
7 70 4 280
8 100 9 900
9 120 5 600

Sum of the Weighted Responses 4500.0

Sum of the Ranks = 45

Weighted Sum = 4500 = 100
45

The weighted average response for the maximum number of monthly changes is 100. The

next step is to ask the experts in what month will the total number of changes in the subject of

interest increase to some intermediate value between 25 and 100. Let's use 50. Table 26 list the

responses of the nine experts.

Table 26. Experts' Responses to When 50 Changes Will Occur

[Expert Response [Rank [Weighted Response
1 July (6) 3 18
2 February (1) 7 7
3 May (4) 2 8

4 April (3) 6 18
5 May (4) 8 32
6 June (5) 1 5
7 April 15 (3.5) 4 14
8 May 15 (4.5) 9 40.5
9 August 15 (7.5) 5 37.5
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Note: The number in parenthesis ( ) is the number of months that response is from January.

For example, April is 3 months away from January.

Sum of the Weighted Responses = 180

Sum of the Ranks = 45

Weighted Sum = IQ = 4 => MAY

The calculated average weighted response for an increase to 50 monthly changes is May.

Following the same line of questioning, ask the experts in what month will the total number of

changes increase to another intermediate value, such as 75. It is the analyst's responsibility to ensure

that the responses from the experts are reasonable. For example, assuming that'the function of the

v(B) function is increasing, if an expert stated that the number of monthly changes would increase

from to 50 in March and then states that the number of monthly changes would increase to 75

in February of the same year, the expert is being unreasonable. Table 27 shows the responses for

when the total monthly number of changes will increase to 75.

Table 27. Experts' Responses to When 75 Changes Will Occur

Expert [ Response I Rank [ Weighted Response

1 Sept (8) 3 24
2 April (3) 7 21
3 July (6) 2 12

4 June (5) 6 30
5 August (7) 8 56
6 August (7) 1 7
7 June (5) 4 20
8 July (6) 9 54
9 Sept (8) 5 40

Note: The number in parenthesis ( ) is the number of months that response is from January.

Sum of the Weighted Responses = 264

Sum of the Ranks = 45

Weighted Sum = 264 = 5.8667 => JULY
4510
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Rounding to the nearest digit (month), the calculated average weighted response for an in-

crease to 75 monthly changes is July.

The analyst may continue the line of questioning for intermediate values. The final question

for the experts is when will the number of monthly changes increase to the maximum number,

already determined to be 100. Table 28 summarizes the experts' responses.

Table 28. Experts' Responses to When Maximum Changes Will Occur

Expert Response ] Rank Weighted Response

1 Oct (9) 3 27
2 June (5) 7 35
3 Sept (8) 2 168
4 August (7) 6 42
5 Sept (8) 8 64
6 Sept (8) 1 8
7 July (6) 4 24
8 August 15 (7.5) 9 67.5
9 Oct (9) 5 45

Note: The number in parenthesis ( ) is the number of months that response is from January.

Sum of the Weighted Responses = 328.5

Sum of the Ranks = 45

Weighted Sum - 328.5 = 7.3 = . AUGUST
45

Rounding to the nearest month, the calculated average weighted response for an increase to

100 changes is August.

After the questioning is complete, the analyst will have a linear piecewise approximation

to the v(B) function. The analyst initially thought that the v(B) function would be either an

exponentially increasing function or a ramp function. Figure 50 is a plot of the actual monthly

number of changes in observations, a fit to the data using a constant slope of 10.714 from January

1991 to July 1991, and a linear piecewise approximation to the v(B) function.
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Figure 50. Actual and Predicted Values using the Generalized Fractile Method and a Constant
Slope for the Subject of Interest

If the actual data is fitted using a constant slope of 10.714, the mean squared error from

January 1991 to July 1991 is 571.0. If the actual data is fitted using the linear piecewise approxi-

mation to the v(B) function, the mean squared error from January 1991 to July 1991 is 337.0. The

linear piccewise approximation resembles an exponentially increasing function more than a ramp

function and the mean squared error is considerably lower for the piecewise linear approximation.

Thus, it can be concluded that the ramp function is not appropriate for the calibration of the v(B)

function.

5.5 Simple Exponential Smoothing

Simple exponential smoothing is a popular technique to forecast time series due to its sim-

plicity, ease of computation, accuracy, and responsiveness to changes in the data. A forecasting

system utilizing simple exponential smoothing involves redesignating the model parameters each
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period in order to incorporate the most recent period's observation (16:82). An appropriate way

to obtain the new estimate is to modify the old estimate by some fraction of the forecast error

resulting from using the old estimate to forecast demand in the current period from the following:

F(t + 1) = aX(t) + (1 - a)F(t) (31)

where F(t) is the forecast at time t,

X(t) is the observation at time t, and

a is called the smoothing constant (16:84) (25:53).

Typical values for a lie between 0.01 and 0.30. The a-value is selected by minimizing the

mean squared error. Any system that has an a-value greater than 0.50 should not be modelled

using simple exponential smoothing.

A relatively small a is used when lots of noise is present in the data. A small a (0.01 - 0.10)

will force the forecasting system to react very slowly to changes in the data. As a result, the system

will smooth over the noise. A relatively large a (0.20 - 0.30) is used when it is necessary to react

quickly to changes in the data.

A problem arises when an intervention occurs that abruptly effects the underlying process.

Values of a between 0.01 and 0.30 may take a long time to home in to the new level; biased forecasts

will occur and will continue for some time (25:53).

An intervention, such as the start of the Gulf War, effects the time series abruptly. A relatively

high value of a is expected to model the effect of an intervention. Let's assume that the analyst

is interested in simple exponential smoothing the monthly number of changes in the subject of

interest. Using the software package MDECAST, simple exponential smoothing with an a-value

of 1.0 minimized the mean square error. A simple exponential smoothing system that minimizes

the mean square error when a = 1.0, is simply using the most recent observation as the prediction
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one time period into the future. Table 29 lists the a-value and the associated mean squared value

, rounded to the nearest one-thousandths, for the time series of number monthly changes from

August 1989 through August 1992.

Table 29. Simple Exponential Smoothing Results

ALPHA [ MSE

0.10 597.472
0.20 265.864
0.30 155.023
0.40 104.789
0.50 77.952
0.60 62.227
0.70 52.490
0.80 46.280
0.90 42.311
0.99 40.074
1.00 39.889

The simple exponential smoothing approach is a very simple and elementary way to account

for interventions. Though the computer runs show that a very high a value produces the best mean

squared error, it is not wise to use an a value higher than 0.50. This is not wise because a system

with an a of 0.50 will not respond quickly to interventions, and it will also respond to noise. There

is a tradeoff between modelling abrupt changes in the data due to an intervention and modelling

noise. A multiple criteria decision making approach of goal setting programming and compromise

programming to determine the a value will produce better results than the a value that minimizes

the mean squared error. According to Chan,

Goal setting programming for satisficing solutions is defined as the procedure of iden-
tifying a satisficing set S such that, whenever the decision outcome is an element of
S, the decision maker will be happy and satisfied and is assumed to have reached the
optimal solution. (6:1)

No system will ever completely model the interventions effecting the time series, while com-

pletely smoothing the noise. For purposes of illustration, let's assume that the decision maker (DM)
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is the one person that will determine if the model is appropriate. The DM defines his satisficing

set as S = (Y1, Y2 1'1 > 0.90, Y, > 0.90) where Y1 is the percentage of the noise that is smoothed

and Y2 is the percentage of the intervention(s) that is modelled.

The satisficing set is not reachable using a simple exponential smoothing approach. The DM is

not willing to lower his standards and so it becomes necessary to employ compromise programming.

The compromise solution is that solution that minimizes the norm. The DM decides that it is

equally important to model the intervention(s) and smooth the noise.

There is a direct relationship between the half-life of an intervention and the best a value.

The half-life of an intervention is considered to be that point in time where the change in the

mean has reached its half-way point. For example, if the number of observations changes was

25 in January and 100 in August, the half-life is that month where the number of changes was

approximately 37.5. In the example, this corresponds to the month of April. This was 3 months

after the intervention occurred. If the change in the mean changes very abruptly, a relatively high

value of alpha is necessary to stay "caught uP" with the effect of the intervention. If the change in

the mean occurs slowly, a relatively small value of a will fit the intervention.

There is also a direct relationship between the effect of the intervention and the a value.

If the percent change in the mean is relatively large, a relatively large a value is necessary to

accommodate the large change. If the percent change in the mean is relatively small, a relatively

small a value will suffice.

The amount of noise in the data can be determined from a plot of tile autocorrelations of

the time series and the Q-statistic. An autocorrelation statistically different from zero signifies

non-randomness. Higher values of the Q-statistic suggest more noise in the data. The capability to

model a system decreases as the Q-statistic increases. Thus, the Q-statistic effects the percentage

of noise smoothed and the percentage of the intervention(s) modelled.
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Let's define the X-space as three-dimensional with zj, x2 , and z 3 where x, is the half-life

of the intervention, X2 is the percent change in the mean, and X3 is the Q-statistic. The following

relationships are assumed to exist:

Y1(% intervention modelled) = f(X1, X2 , X3) (32)

Y2(% noise smoothed) = f(X 1 ,x 2 , X3) (33)

Z(best o - value) = f(Y, Y ) (34)

It is assumed that the above relationships exist such that the X-, Y-, and Z- spaces are

convex and continuous. For purposes of illustration, let's assume the following:

G, = - -+ X2 < 1.20 (35)
100 -

G2 = X3 43 (36)

= 0.50x, + 35X2 + 0.15x 3  (37)

100

12 0.60X32 - 100

Z = Y1 + Y2  (39)
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The compromise solution can be written as:

MIN[0.90 - 0.50x + 0.35X2 + 0.25X3 + 0.90 - 0.60X] (40)
100 100

S.T. G1 < 1.20

G 2 < 43

This can be solved on any linear programming solver.

5.6 Adaptive Response Rate Exponential Smoothing

Simple exponential smoothing assumes that the process is constant (16:81). This assumption

requires a constant mean and variance. Differencing is a common cure for varying means and a

transformation is a common cure for varying variance.

If a time series contains a varying mean or variance, the forecasts produced by exponential

smoothing are not statistically meaningful. Classical statistical theory treats the majority of data

changes as random effects or temporary shifts. Examples of such data changes include steps, trends,

and transient shifts. If these changes are permanent, it is likely that a new forecasting model will

have to be specified to deal with the new equilibrium conditions. There are two potential problems

with the classical statistical forecasting methods:

(1) They may not detect a shift in the data.

(2) They may not model well after a shift has occurred since the model is using

the same specifications from before the shift.

If there is a change in the mean, adaptive response rate exponential smoothing can account

for the change in the mean by continuously updating its parameter. Updating the parameters

accounts for changes in the pattern and can deal with changes in trend.
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Once an a level for a simple exponential smoothing system has been specified, it is not usually

changed until a new model is created. When using a simple exponential smoothing model, a tracking

signal is normally used to aid in the detection of an inappropriate a-value. It is sometimes difficult

to detect a "bad" tracking signal and realize an intervention has occurred when forecasts are being

made for several thousand time series (25:54).

The tracking signal is defined as:

smoothed errorTrackingSignal = smnooiihed error I  (41)

If the model is appropriate, the tracking system will fluctuate around zero. The most obvious

way to react automatically when fitted values go out of control is to increase the value of a, so

as to give more weight to recent data in order to model the changes in the data (25:54-55). It

is important to lower the a-value once the changes have occurred in order to reduce the amount

of noise modelled (25:55). A very elementary way of adapting the response rate is to equate the

a-value to the modulus of the tracking signal (25:55). The equation for adaptive response rate

exponential smoothing is:

F(t + 1) = a(t)X(t) + [1 - a(t)]F(t) (42)

such that

a(t + 1) =1 e(i) 1(43)M(t)

E(t = 1) = M(t = 1) = 0 (44)
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E(t) = [1 - a(t)Je(t) + a(t)E(t - 1) (45)

M(t) = [1 - a(t)] I e(t) I +a(t)M(t - 1) (46)

An adaptive response rate exponential smoothing forecast was created using the software

package MDECAST. The mean squared error using this approach was 54.515. A mean squared error

of 52.490 occurred when a was 0.70 for the simple exponential smoothing. A simple exponential

smoothing system with an a-value of 0.70 is considered an inappropriate model since the or-value

is greater than 0.50. Thus, it is more advantageous to use an adaptive response rate exponential

smoothing forecast.

5.7 Kalman Filter

The adaptive response rate exponential smoothing can account for change in the mean of the

data. Unfortunately, it can not account for changes in the variance of the data. If intervention

analysis can not be accomplished, the Kalman filter is the best way to account for the effects of an

intervention because it can account for variable models, variable parameters, and variable variances

simultaneously. All forecasting methods are special cases of the Kalman filter.

The Kalman filter combines two independent estimates of the time series to form a weighted

estimate. One estimate is a prior prediction based on prior knowledge and the other is based on

the new data. The purpose is to combine these two estimates to get an even better estimate. The

Kalman filter is very similar to a Bayesian approach in that a Bayesian approach uses prior and

sampling information to form a posterior distribution. The following is the Kalman filter equation

for a univariate time series:
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F(t + 1) = wX(t) + (1 - w)F(t) (47)

such that

2F + x (48)

so

f(t + 1) = X(t) + F(t) (49)
2 + r)

The equation F(t + 1) wX(t) + (1 - w)F(t) is identical to simple exponential smoothing.

As the uncertainty of the future increase, so too will the value of the variance of X Ac relative

to the variance of F a.. This forces the denominator of the equation for w to increase and w to

decrease, putting more weight on F(t) relative to X(t). Now, w is a variable that changes over

time. The parameter w(t) is similar to a(t) in adaptive response rate exponential smoothing but,

a(t) is calculated using past data and w(t) is calculated using variances.

5.8 Multfattribute Utility Theory (MA UT)

Multiattribute utility theory (MAUT) can also be used to determine which external events

are likely to trigger a change in the monthly number of changes in the subject of interest. MAUT

attempts to explicitly and directly model a decision maker's behavior. In this case, the one person

who decides whether to change the subjecL cf interest is the decision maker. The analyst wants to

model the decision maker's behavior via the following equation:
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U(Xl, X2X 3 , X4, x 5 ) = wi1ui(X) + W2 U2(X2) + W3U 3 (X 3 ) + t 4 U 4 (X 4 ) + W5U5(X5) (50)

where wl+W2+ W3+w 4 +w 5 = 1

Thus, an additive value function is assumed. It is also assumed that the attributes x1 ,z.,x 3 ,z 4 ,

and x5 are independent and that ui(xi) is a one dimensional value function for all i, i = 1,2,..,, 5.

There are five steps to measuring value functions:

1. Familiarize the decision maker (DM) to the concepts and techniques of

value-function measurement.

2. Identify the appropriate value-decomposition form, u(x).

3. Measure the component value function, ui(xi).

4. Determine the ws.

5. Validate the consistency of u(x) against the decision maker's observed rankings.

The fifth step is the most important and the most difficult step.

5.9 Comparisons and Contrasts of Simple Exponential Smoothing, Adaptive Response Rate Expo-

nential Smoothing, and the Kalman Filter

There are arguments for and against using simple exponential smoothing and adaptive re-

sponse rate exponential smoothing. When using simple exponential smoothing, the analyst is given

the freedom to use any a-value based upon the characteristics of the time series and the expecta-

tions of the intervention's effect. The a-value for an adaptive response rate exponential smoothing

system, however, is based purely upon the data. In other words, the analyst has no input into the

value of the a. Calculating the best a-value for the simple exponential smoothing model is a lot of
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work. The adaptive response rate method deletes the dilemma of determining the optimal a-value.

Thus, when forecasts are being made for a large number of time series with many data points, such

as the case with the Pijk's, it is suggested to use adaptive response rate exponential smoothing.

When there is some insight into the effect of the intervention, the recommended approach is simple

exponential smoothing using a compromise programming approach to determine the best a-value.

The simple exponential smoothing approach does not account for changes in either the mean

or the variance. The adaptive response rate exponential smoothing approach does not account for

changes in the variance. The Kalman filter accounts for both changes in the mean and the variance

simultaneously.

Classical statistical estimation, such as the simple exponential approach, attempts to minimize

the mean squared error. Minimizing the mean squared error is an appropriate criterion for past

observations but may not be for future predictions.

There are some major problems involving the Kalman filter that involve many technical

questions not being answered satisfactorily. The approach is not well understood in the Operation

Research career field because the approach has its beginnings in Engineering and is described in

state-space notation. Initial estimates for the parameters and variances are difficult to calculate in

the univariate case and are compounded by the need of initial estimates for covariances and the

transition matrix in the multivariate case. Each update of the estimates using the Kalman filter

requires the calculation of the variance of X, o;.

All three approaches update its estimates using new and old information. The weights com-

bining new and old information for the exponential smoothing approaches are functions of past

data. The weights for the Kalman filter are functions of variances. The estimates for all three

approaches can be computed recursively.
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There are definite advantages between simple exponential smoothing, adaptive response rate

exponential smoothing, and Kalman filtering. Both of the exponential smoothing approaches are

special cases of the Kalman filter. Thus, the best approach is a Kalman filter.

5.10 Comparisons and Contrasts of Intervention Analysis and the Kalman Filter

Both intervention analysis and the Kalman filter are ways of accounting for an external event's

effect on a time series. Intervention analysis has some advantages and some disadvantages over the

Kalman filter. It becomes necessary to use a Kalman filter as opposed to intervention analysis when

there are no experts in the field, the experts do not know the answers to the analys,' 'suestions,

the experts are not willing to tell the analyst the answers, or the analyst does not have the time or

the resources. Experts in the field are the most important aspect of intervention analysis. If the

analyst can not find any qualified experts, intervention analysis can not be conducted.

Intervention analysis tells you when the intervention occurred. The Kalman filter tells you

approximately when an intervention occurs. The analyst would want to use Intervention Analysis

if the time an intervention started is important. On the other hand, a Kalman filter can accouiA

for interventions without recognizing the particular incident.

Intervention anb'ysis tells you what the intervention is, while Kalman filtering does not.

Intervention analysis is more causal since you know what is causing the effect on the time series.

With Kalman filtering, all you know is that there is an effect.

The Kalman filter is less labor intensive but is more difficult to understand.

A Kalman filter explains switches by use of the data in terms of the mean and the variance

without having to recognize the time the incident occurs or the shape of the effect. Intervention

analysis determines the switches exogenously from the data.

A Kalman filter continuously groups the data. For example, a Kalman filter may have trun-

cated the data for the number of the subject of interest changes into five groups. The intervention
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analysis simply groups the data into two groups: one group is the data occurring before January

1991 and the other group is the data occurring after January 1991.

A Kalman filter uses past and present information contained in the data to calculate its

estimates. Intervention analysis uses exogenous information along with past and present data

observations to calculate its estimates. As a result, the Kalman filter has to dig out the information

that it needs to calculate its estimates and quite often, this information is hard to dig out. Because

the intervention analysis determines the effects of the interventions exogenously, there is no chance

of modelling noise in the data as the intervention effect. There is a higher chance that the Kalman

filter can pick up noise.

5.11 Comparisons and Contrasts Between Intervention Analysis, Social Judgement Theory, and

Multiattribute Utility Theory

The factor analysis that was conducted to determine which external events are potential

interventions is also called social judgment theory (SJT). SJT is quite similar to Multi-Attribute

Utility Theory (MAUT) except in the way that the input data are obtained (27:446). The objective

of SJT is:

to obtain an explicit, quantitative description of the decision maker's cognitive sys-
tem (the policy), by which information is integrated in to an expression of preference.
(27:446)

Social judgement theory uses linear regression to capture decision making.

The basic additive utility model from MAUT theory is:

u(XI, X2,z 3 ) = wIuI(Xl) + w2 u2(z 2 ) + w3 u3 (X3 ) (51)

Social judgement theory introduces the following transformation:
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X = u,(X,) (52)

Equation 51 can now be rewritten as:

U(X1, X 2 , Z3) = WlZ + W2-- 2 + W3 x 3  (53)

By introducing the transformation, it is no longer necessary to calculate the component utility

functions but the weights still need to be calibrated.

In MAUT, the weights are determined by directly questioning experts. As a result, a set of

independent and consistent equations are derived and the weights are computed (27:448). In SJT,

the weights are calculated by analyzing past behavior.

The two techniques differ mainly in the approach for calculating the weights and the compo-

nent utility functions. The standard lottery technique introduced by Keeney and Raiffa is used to

calculate the weights and the utility functions when applying MAUT (27:455).

In 1976, Bertil Tell conducted a study where SJT and MAUT were compared. All MAUT

type models produced higher correlation coefficients, higher parameter estimate variances, and

more inconsistencies (27:456). The MAUT models also are harder to understand, harder to use,

harder to explain, and more difficult for the experts to answer.
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VI. Conclusions and Recommendations

6.1 The Best and Most Parsimonious Univariate Model for Target Region 11

The primary objective of this research was to develop a methodology to estimate predicted

probabilities Piijk of an event type i occurring at geographical region j at time block k. The problem

was scaled down to only include event type 2 and time block 1. The four iterative stage of the Box-

Jenkins forecasting approach was used to develop a univariate STARMA model for geographical

region 11. The best and most parsimonious univariate STARMA model for target region is the

SSTMA(21 ,1)12 model. The SSTMA(2 1,1)12 model used to fit geographical region 11 has a SSR of

2.37. After the negative probability predictions are transformed to zero probability predictions, the

SSR drops to 2.34. If the relative analytical probabilities are used to fit geographical region 11, the

SSR value is 3.06. Before performing transformations on the negative probability predictions, the

SSTMA(2 1,1)12 model produced a SSR that is 22.55% better than that of the relative analytical

probabilities. After performing the transformations on the negative proability predictions, the

SSTMA(2 1 ,1 )12 model produced a SSR that is 34.95% better than that of the relative analytical

probabilities.

6.2 Aptness of the STARMA Model

The univariate STARMA methodology is appropriate for predicting probabilities Piik in order

to task for a world-wide sensor system. STARMA modelling is appropriate when temporal and

spatial correlations are present in the data. A temporal correlation is present in the historical data

and can be found in the three dimensional plots. There is a definite 12 month seasonality present

in the historical data base. There is also a definite spatial relationship between the 22 regions in

the historical data.
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6.3 Causal and Correlative

The model created is both a causal and a correlative model (8). The model is a correlative

model in that both the temporal and the spatial correlations were accounted. The model is a causal

model because it incorporates the analytical model probability estimates P2j1. The analytical model

is a causal model that attempts to estimate the probabilities based on physical factors.

6.4 Analytical Model as a Simple Filter

The analytical model was used, in essence, as a simple filter (8). The normalized analytical

model estimates were subtracted from the historical probabilities in the same fashion that a filter

is used. The normalized analytical model filtered the historical data by removing the portion of

the historical relative frequencies described by the normalized analytical probability estimates.

6.5 Characteristics of the SSTMA(2 1,,) 12 Model

The best and most parsimonious model selected is

SSTMA(2 1,1)1 2 . There are no AR terms in the best and most parsimonious model. This simply

means that there is no trend or momentum in the data (8). The MA terms approximate the fidelity

of the time series by continuous blocks of the data (8). The MA terms, in effect, take care of the

deviations from the mean.

6.6 STARMA Software

If more STARMA modelling is to be conducted on the historical data base and the analytical

data base, it is imperative that some commercial software that performs either univariate STARMA

modelling or full STARMA modelling be acquired.
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6.7 Other Methods Besides STARMA

6.8 Differencing to Remove Seasonality

The SSTMA model was fit using the 12 period differenced data because the data after the 12

period difference appeared to be more "uniform" in the spatial dimension. A 12 period difference

was applied to NHA, the difference between the historical data base and the normalized analytical

data base, in an attempt to remove a 12 period seasonality. Unfortunately, the 12 period difference

did not remove the 12 period seasonality as hoped. It was assumed that the seasonality present

in the data may be non-stationary as a consequence of the expected 11 year cycle. This may have

been a poor assumption because the 12 period difference did not, remove the 12 period seasonality.

It would be interesting to perform further analysis with the undifferenced data of the normalized

historical data minus the analytical dataNHA and compare the resultz with th, o'tained in this

research.

6.9 Robustness of the Univariate STARMA Model Selected

The univariate STARMA model selected was developed using a combination ARMA modelling

approach. The target Region selected was geographical region 11. The robustness of the univariate

model developed was checked using target region 7. The target region 11 model was used to develop

forecasts for target region 7. The probability predictions for target region 7 appear to be good fits,

however the SSR value after performing the transformation on the negative probabilities was 4.47.

This is a relatively high SSR value. The residual autocorrelations and partial autocorrelations

appeared to be white noise.

The SSTMA(2 1,1)12 was estimated on the combined series of target region 11. The estimated

model did not pass the diagnostic checking because the parameter coefficient 02,1 was not signif-

icantly different from zero. An appropriate univariate STARMA model for target region 7 may

be SSTMA(2 1,0)12 . If this is the case, it would not be detrimental to model target region 7 as a
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SSTMA(2 1,1 )12 . However, modelling target region 11 with a SSTMA(2 1,0)12 would be inappropri-

ate.

The regions that were first order neighbors to either target region 7 or target region 11

appeared to share similar characteristics. Likewise, the regions that were second order neighbors

to both target region 7 and target region 11 appear similar. But the first order neighbors and the

second order neighbors did not appear to share many characteristics between them. As a result,

it may not be appropriate to develop a full STARMA model on the data set. Perhaps, it would

advantageous to develop two separate full STARMA models: one STARMA model on the first

order neighbors and one STARMA model on the second order neighbors.

6.10 Interventon Analysis

Intervention analysis may be an appropriate method for modelling the probabilities of an event

type i occurring at geographical region j at time block k is policy or doctrinal changes and other

external events are triggering a gradual or abrupt change in the mean or tend of teh time series. The

difficulty with intervention analysis is all factors must be determined exogenously from the data.

Factor analysis, ARMA model building, and the fractile method are three techniques that can be

used to determine what external events are interventions, when an intervention has occurred, and

the function of the effect when an intervention occurs. The difficulty with the smoothing techniques

is smoothing the noise while modeling the interventions. The difficulty with Kalman Filtering is

understanding its principles. The difficulty with multiattribute theory is validating the consistency

of the calibrated u(z) function with the decision maker's actual behavior. The two best methods

other than STARMA to solve the problem are intervention analysis and the Kalman filter. The

degenerate form of the Kalman filter is regression. Thus, all regressions are a degenerate form of

the Kalman filter.
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Appendix A. Historical Database for Event Type 2 and Time Block 1

This appendix contains monthly observations of the historical relative frequency Xijk for event

type 2 and time block 1. The database covers all twenty-two geographical regions from January

of 1985 through July of 1991. The database consists of 1,738 X2 ,j,'s. Each column represents a

geographical region and cach row represents a month.

Table 30. Historical Frequencies X2j,1

1 1] [ 21 31 4 15 16 _7 1 8 1I 9 10 11
JAN 1985 0.00 0.00 0.00 0.00 0.50 0.25 0.00 0.00 0.13 0.00 0.13
FEB 1985 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00
MAR 1985 0.00 0.00 0.00 0.00 0.00 0.17 0.33 0.33 0.00 0.00 0.00
APR 1985 0.00 0.00 0.00 0.50 0.00 0.00 0.00 0.00 0.50 0.00 0.00
MAY 1985 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.67 0.00
JUN 1985 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.60 0.40 0.00 0.00
JUL 1985 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
AUG 1985 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
SEP 1985 0.00 0.00 0.00 0.89 0.00 0.00 0.00 0.00 0.00 0.00 0.00
OCT 1985 0.00 0.00 0.21 0.00 0.00 0.21 0.18 0.11 0.14 0.04 0.00
NOV 1985 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.67 0.00 0.33
DEC 1985 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
JAN 1986 0.00 0.00 0,00 0.00 0.00 0.00 0.00 0.00 0.20 0.00 0.40
FEB 1986 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
MAR 1986 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00
APR 1986 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
MAY 1985 0.00 0.00 0.00 0.00 0.00 0.00 0.50 0.17 0.00 0.00 0.00
JUN 1986 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.11 0.00
JUL 1986 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
AUG 1986 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
SEP 1986 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
OCT 1986 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
NOV 1986 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
DEC 1986 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
JAN 1987 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
FEB 1987 0.00 0.00 0.00 0.28 0.17 0.39 0.06 0.06 0.00 0.00 0.00
MAR 1987 0.00 0.00 0.00 0.10 0.26 0.14 0.30 0.16 0.00 0.03 0.01
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Table 31. Historical Frequencies X 2 ,j,1 continued

1 112[31415 6 7 819110 11
APR 1987 0.00 0.00 0.00 0.00 0.00 0.00 0.04 0.29 0.04 0.00 0.00
MAY 1987 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.67 0.22 0.00
JUN 1987 0.00 0.00 0.00 0.00 0.00 0.29 0.00 0.00 0.00 0.57 0.00
JUL 1987 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
AUG 1987 0.00 0.00 0.00 0.00 0.00 0.02 0.06 0.05 0.38 0.05 0.03
SEP 1987 0.00 0.00 0.00 0.03 0.00 0.05 0.43 0.11 0.08 0.08 0.11
OCT 1987 0.00 0.00 0.00 0.00 0.00 0.16 0.03 0.03 0.09 0.06 0.31
NOV 1987 0.00 0.00 0.00 0.00 0.05 0.05 0.30 0.16 0.08 0.05 0.05
DEC 1987 0.00 0.03 0.00 0.00 0.00 0.03 0.17 0.10 0.24 0.00 0.17
JAN 1988 0.00 0.02 0.00 0.02 0.14 0.12 0.24 0.12 0.14 0.00 0.07
FEB 1988 0.00 0.00 0.00 0.00 0.00 0.50 0.50 0.00 0.00 0.00 0.00
MAR 1988 0.00 0.00 0.08 0.00 0.00 0.08 0.67 0.00 0.18 0.00 0.00
APR 1988 0.00 0.00 0.00 0.08 0.00 0.23 0.08 0.15 0.00 0.00 0.08
MAY 1988 0.00 0.00 0.08 0.00 0.00 0.08 0.67 0.00 0.18 0.00 0.00
JUN 1988 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.50
JUL 1988 0.00 0.00 0.00 0.00 0.00 0.00 0.04 0.00 0.04 0.08 0.58
AUG 1988 0.00 0.00 0.00 0.00 0.00 0.00 0.06 0.02 0.09 0.00 0.11
SEP 1988 0.00 0.00 0.00 0.00 0.02 0.06 0.18 0.10 0.12 0.29 0.16
OCT 1988 0.00 0.00 0.00 0.00 0.00 0.00 0.04 0.01 0.44 0.37 0.04
NOV 1988 0.00 0.00 0.00 0.00 0.00 0.12 0.14 0.03 0.25 0.16 0.05
DEC 1988 0.00 0.00 0.00 0.15 0.15 0.12 0.00 0.03 0.32 0.06 0.15
JAN 1989 0.00 0.00 0.15 0.02 0.35 0.14 0.07 0.10 0.09 0.00 0.03
FEB 1989 0.00 0.00 0.00 0.02 0.02 0.00 0.20 0.40 0.00 0.00 0.33
MAR 1989 0.00 0.00 0.00 0.00 0.15 0.03 0.38 0.00 0.06 0.00 0.00
APR 1989 0.00 0.00 0.00 0.00 0.00 0.00 0.10 0.01 0.15 0.01 0.02
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Table 32. Historical Frequencies X 2,j,1 continued

[112131415 6[718 911011
MAY 1989 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.01 0.00 0.01
JUN 1989 0.00 0.00 0.00 0.00 0.02 0.00 0.02 0.09 0.04 0.00 0.02
JUL 1989 0.00 0.00 0.00 0.00 0.01 0.00 0.02 0.02 0.03 0.01 0.01
AUG 1989 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.03 0.00 0.07
SEP 1989 0.00 0.02 0.00 0.00 0.02 0.00 0.16 0.02 0.26 0.05 0.02
OCT 1989 0.00 0.00 0.00 0.00 0.00 0.00 0.20 0.00 0.00 0.28 0.04
NOV 1989 0.00 0.00 0.00 0.00 0.03 0.03 0.57 0.00 0.26 0.03 0.03
DEC 1989 0.00 0.00 0.00 0.00 0.00 0.00 0.20 0.00 0.00 0.80 0.00
JAN 1990 0.03 0.00 0.00 0.00 0.00 0.05 0.65 0.22 0.00 0.00 0.00
FEB 1990 0.00 0.00 0.00 0.00 0.15 0.00 0.41 0.21 0.00 0.24 0.00
MAR 1990 0.00 0.00 0.00 0.00 0.00 0.00 0.09 0.14 0.21 0.29 0.02
APR 1990 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.29 0.41 0.00
MAY 1990 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.05 0.00 0.23
JUN 1990 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.01 0.01 0.24
JUL 1990 0.00 0.00 0.00 0.00 0.00 0.02 0.00 0.00 0.04 0.00 0.26
AUG 1990 0.00 0.00 0.00 0.00 0.00 0.08 0.05 0.00 0.13 0.00 0.53
SEP 1990 0.02 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.74
OCT 1990 0.00 0.00 0.00 0.00 0.05 0.12 0.14 0.02 0.10 0.02 0.54
NOV 1990 0.00 0.00 0.00 0.00 0.00 0.00 0.87 0.09 0.00 0.00 0.00
DEC 1990 0.00 0.10 0.10 0.00 0.00 0.00 0.70 0.00 0.00 0.10 0.00
JAN 1991 0.00 0.00 0.00 0.00 0.08 0.00 0.88 0.00 0.02 0.00 0.02
FEB 1991 0.00 0.00 0.00 ().00 0.04 0.00 0.46 0.02 0.00 0.00 0.38
MAR 1991 0.00 0.00 0.00 0.00 0.00 0.00 0.27 0.02 0.25 0.13 0.08
APR 1991 0.00 0.00 0.00 0.00 0.00 0.00 0.06 0.00 0.27 0.00 0.38
MAY 1991 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.10 0.04 0.57
JUN 1991 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.03 0.11 0.66
JUL 1991 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.05 0.02 0.64
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Table 33. Historical Frequencies X 2,,j, continued

[_ _ 12 1 13 14 1 15 1 16 1 17 18 19 20 21 22
JAN 1985 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
FEB 1985 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
MAR 1985 0.00 0.00 0.00 0.17 0.00 0.00 0.00 0.00 0.00 0.00 0.00
APR 1985 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0
MAY 1985 0.00 0.33 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
JUN 1985 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
JUL 1985 0.00 0.00 0,00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
AUG 1985 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
SEP 1985 0.00 0.11 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
OCT 1985 0.00 0.07 0.00 0.00 0.00 0.04 0.00 0.00 0.00 0.00 0.00
NOV 1985 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
DEC 1985 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
JAN 1986 0.40 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
FEB 1986 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
MAR 1986 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
APR 1986 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
MAY 1985 0.00 0.00 0.00 0.00 0.33 0.00 0.00 0.00 0.00 0.00 0.00
JUN 1986 0.00 0.00 0.78 0.00 0.11 0.00 0.00 0.00 0.00 0.00 0.00
JUL 1986 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
AUG 1986 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
SEP 1986 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
OCT 1986 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
NOV 1986 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
DEC 1986 0.25 0.50 0.00 0.00 0.25 0.00 0.00 0.00 0.00 0.00 0.00
JAN 1987 0.00 0,00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
FEB 1987 0.00 0.06 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
MAR 1987 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
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Table 34. Historical Frequencies X 2 ,j,l continued

1 12 1 13 [ 14 1 15 16 17 18 1 19 20 21 221

APR 1987 0.58 0.00 0.00 0.04 0.00 0.00 0.00 0.00 0.00 0.00 0.00
MAY 1987 0.00 0.06 0.06 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
JUN 1987 0.00 0.14 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
JUL 1987 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
AUG 1987 0.08 0.13 0.13 0.02 0.00 0.03 0.05 0.00 0.00 0.00 0.00
SEP 1987 0.05 0.03 0.00 0.00 0.00 0.03 0.00 0.00 0.00 0.00 0.00
OCT 1987 0.03 0.06 0.03 0.16 0.00 0.00 0.03 0.00 0.00 0.00 0.00
NOV 1987 0.02 0.06 0.03 0.00 0.00 0.08 0.02 0.08 0.00 0.00 0.00
DEC 1987 0.03 0.14 0.03 0.00 0.03 0.00 0.00 0.00 0.00 0.00 0.00
JAN 1988 0.05 0.00 0.05 0.00 0.02 0.00 0.00 0.00 0.00 0.00 0.00
FEB 1988 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
MAR 1988 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
APR 1988 0.08 0.31 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
MAY 1988 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
JUN 1988 0.33 0.00 0.00 0.17 0.00 0.00 0.00 0.00 0.00 0.00 0.00
JUL 1988 0.06 0,14 0.06 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
AUG 1988 0.00 0.24 0.04 0.10 0.11 0.14 0.08 0.01 0.00 0.00 0.00
SEP 1988 0.04 0.02 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
OCT 1988 0.07 0.00 0.01 0.00 0.01 0.00 0.01 0.00 0.00 0.00 0.00
NOV 1988 0.14 0.01 0.00 0.10 0.00 0.00 0.00 0.00 0.00 0.00 0.00
DEC 1988 0.00 0.00 0.00 0.00 0.00 0.03 0.00 0.00 0.00 0.00 0.00
JAN 1989 0.03 0.00 0.00 0.01 0.00 0.01 0.00 0.00 0.00 0.00 0.00
FEB 1989 0.00 0.00 0.00 0.03 0.00 0.00 0.00 0.00 0.00 0.00 0.00
MAR 1989 0.00 0.00 0.00 0.34 0.00 0.04 0.00 0.00 0.00 0.00 0.00
APR 1989 0.07 0.24 0.00 0.34 0.02 0.00 0.03 0.00 0.00 0.00 0.00

129



Table 35. Historical Frequencies X 2 ,j,1 continued

Ii ____ _ 12 [ 13 1 14 [ 15 1 16 1 17 18 1 19 [ 20 1 21 ] 22

MAY 1989 0.06 0.01 0.00 0.47 0.14 0.18 0.06 0.04 0.00 0.00 0.00
JUN 1989 0.01 0.37 0.02 0.18 0.13 0.01 0.00 0.07 0.00 0.00 0.00
JUL 1989 0.01 0.16 0.00 0.52 0.01 0.00 0.13 0.08 0.00 0.00 0.00

AUG 1989 0.17 0.21 0.00 0.28 0.17 0.03 0.00 0.00 0.00 0.03 0.00
SEP 1989 0.14 0.17 0.00 0.05 0.03 0.00 0.00 0.05 0.02 0.00 0.00
OCT 1989 0.24 0.08 0.00 0.00 0.04 0.12 0.00 0.00 0.00 0.00 0.00
NOV 1989 0.02 0.00 0.00 0.03 0.00 0.00 0.00 0.00 0.00 0.00 0.00
DEC 1989 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
JAN 1990 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.05 0.00 0.00 0.00
FEB 1990 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
MAR 1990 0.00 0.07 0.00 0.00 0.02 0.11 0.00 0.06 0.00 0.00 0.00
APR 1990 0.01 0.00 0.00 0.00 0.00 0.12 0.06 0.10 0.00 0.00 0.00
MAY 1990 0.04 0.09 0.02 0.09 0.00 0.03 0.34 0.11 0.00 0.00 0.00
JUN 1990 0.00 0.02 0.00 0.12 0.00 0.04 0.47 0.07 0.00 0.00 0.00

JUL 1990 0.06 0.06 0.04 0.06 0.02 0.13 0.09 0.21 0.00 0.00 0.00
AUG 1990 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.21 0.00 0.00 0.00
SEP 1990 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.23 0.00 0.00 0.00
OCT 1990 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.02 0.00 0.00 0.00
NOV 1990 0.02 0.00 0.00 0.00 0.00 0.00 0.00 0.02 0.00 0.00 0.00
DEC 1990 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
JAN 1991 0.00 0.02 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
FEB 1991 0.00 0.04 0.00 0.00 0.00 0.00 0.07 0.00 0.00 0.00 0.00
MAR 1991 0.00 0.00 0.00 0.15 0.00 0.00 0.00 0.10 0.00 0.00 0.00
APR 1991 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.29 0.00 0.00 0.00
MAY 1991 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.27 0.00 0.00 0.00
JUN 1991 0.00 0.00 0.01 0.05 0.00 0.00 0.00 0.14 0.00 0.00 0.00
JUL 1991 1 0.00 0.06 0.00 0.13 0.01 0.00 0.00 0.10 0.00 0.00 0.00
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Appendix B. Average Relative Frequencies Over Each Year for Event Type 2 and

Time Block 1

This appendix contains the average relative frequency Xijk observed over each year for event

type 2 and time block 1 for all twenty-two geographical regions. Each column represents a year

and each row represents a geographical region.

Table 36. Historical Frequencies X 2 j,1 Over Each Year

1 [ 1985 1 1986 3 1987 j 1988 ] 1989 1 1990 1991
1 0.00 0.00 0.00 0.00 0.00 0.00 0.00
2 0.00 0.00 0.00 0.00 0.00 0.01 0.00
3 0.02 0.00 0.00 0.01 0.01 0.01 0.00
4 0.20 0.00 0.03 0.02 0.00 0.00 0.00
5 0.04 0.08 0.04 0.03 0.05 0.02 0.02
6 0.14 0.00 0.09 0.11 0.02 0.02 0.00
7 0.04 0.04 0.12 0.22 0.16 0.24 0.24
8 0.09 0.01 0.08 0.04 0.05 0.06 0.01
9 0.15 0.02 0.13 0.15 0.08 0.07 0.10
10 0.06 0.01 0.09 0.08 0.10 0.09 0.04
11 0.04 0.03 0.06 0.15 0.05 0.21 0.39
12 0.00 0.05 0.07 0.06 0.06 0.01 0.00
13 0.04 0.04 0.06 0.06 0.10 0.02 0.02
14 0.00 0.07 0.02 0.01 0.00 0.01 0.00
15 0.01 0.00 0.02 0.03 0.19 0.02 0.05
16 0.00 0.06 0.00 0.01 0.05 0.00 0.00
17 0.00 0.00 0.01 0.01 0.03 0.04 0.00
18 0.00 0.00 0.01 0.01 0.02 0.08 0.01
19 0.00 0.00 0.01 0.00 0.02 0.09 0.13
20 0.00 0.00 0.00 0.00 0.00 0.30 0.00
21 0.00 0.00 0.00 0.00 0.00 0.00 0.00
22 0.00 0.00 0.00 0.00 0.00 0.00 0.00
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Appendix C. Average Relative Frequencies Over Each Season for Event Type 2

and Time Block 1

This appendix contains the average relative frequency Xijk observed over each season for

event type 2 and time block 1. The database covers all twenty-two geographical regions. Each

column represents a season and each row represents a geographical region.

Table 37. Average Relative Frequencies X 2,j,1 Observed Over Each Season

I WINTER SPRING SUMMER I FALL]

REGION 1 0.00 0.00 0.00 0.00
REGION 2 0.01 0.00 0.00 0.00
REGION 3 0.01 0.01 0.00 0.01
REGION 4 0.08 0.03 0.00 0.06
REGION 5 0.09 0.07 0.00 0.01
REGION 6 0.14 0.04 0.03 0.05
REGION 7 0.25 0.18 0.02 0.22
REGION 8 0.07 0.06 0.05 0.05
REGION 9 0.06 0.15 0.08 0.17
REGION 10 0.07 0.09 0.06 0.10
REGION 11 0.09 0.07 0.24 0.16
REGION 12 0.04 0.04 0.05 0.05
REGION 13 0.04 0.06 0.10 0.04
REGION 14 0.00 0.00 0.07 0.00
REGION 15 0.00 0.08 0.11 0.02
REGION 16 0.02 0.03 0.04 0.01
REGION 17 0.00 0.02 0.03 0.02
REGION 18 0.00 0.02 0.05 0.00
REGION 19 0.00 0.05 0.06 0.03
REGION 20 0.00 0.00 0.00 0.00
REGION 21 0.00 0.00 0.00 0.00
REGION 22 0.00 0.00 0.00 0.00
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Appendix D. Analytical Database for Event Type 2 and Time Block 1

This appendix contains monthly observations of the analytical predictions ijj for event type

2 and time block 1. The database covers all twenty-two geographical regions from January of 1985

through July of 1991. The database consists of 1,738 hjj 's. Each column represents a geographical

region and each row represents a month.

Table 38. Analytical Predictions P2,1,

1_ 1 2 1 3 [ 4 5 1 6 1 7 1 8 1 9 10I11
JAN 1985 0.01 0.00 0.00 0.01 0.02 0.03 0.09 0.08 0.04 0.01 0.00
FEB 1985 0.00 0.00 0.00 0.00 0.01 0.05 0.10 0.15 0.13 0.07 0.02
MAR 1985 0.02 0.01 0.00 0.01 0.04 0.12 0.21 0.41 0.48 0.47 0.30
APR 1985 0.00 0.00 0.00 0.00 0.01 0.04 0.16 0.29 0.44 0.55 0.59
MAY 1985 0.00 0.00 0.00 0.00 0.00 0.02 0.09 0.18 0.30 0.35 0.42
JUN 1985 0.00 0.00 0.00 0.00 0.00 0.00 0.02 0.08 0.16 0.23 0.36
JUL 1985 0.00 0.00 0.00 0.00 0.00 0.01 0.06 0.13 0.20 0.30 0.50
AUG 1985 0.00 0.00 0.00 0.00 0.00 0.01 0.06 0.13 0.25 0.38 0.45
SEP 1985 0.00 0.00 0.00 0.01 0.01 0.08 0.30 0.50 0.70 0.70 0.63
OCT 1985 0.01 0.00 0.00 0.00 0.00 0.04 0.23 0.41 0.54 0.56 0.49
NOV 1985 0.02 0.01 0.00 0.01 0.01 0.07 0.16 0.28 0.15 0.06 0.01
DEC 1985 0.04 0.01 0.00 0.00 0.00 0.10 0.08 0.02 0.00 0.00 0.00
JAN 1986 0.01 0.00 0.00 0.01 0.02 0.03 0.11 0.07 0.02 0.00 0.00
FEB 1986 0.00 0.00 0.00 0.01 0.01 0.05 0.10 0.21 0.11 0.06 0.02
MAR 1986 0.02 0.01 0.00 0.01 0.04 0.12 0.19 0.38 0.42 0.33 0.23
APR 1986 0.00 0.00 0.00 0.00 0.01 0.04 0.17 0.28 0.42 0.53 0.56
MAY 1986 0.00 0.00 0.00 0.00 0.00 0.02 0.09 0.18 0.29 0.33 0.40
JUN 1986 0.00 0.00 0.00 0.00 0.00 0.00 0.02 0.08 0.18 0.23 0.35
JU T, 1986 0.00 0.00 0.00 0.00 0.00 0.01 0.06 0.12 0.19 0.30 0.47
AUG 1986 0.00 0.00 0.00 0.00 0.00 0.01 0.06 0.13 0.24 0.36 0.41
SEP 1986 0.00 0.00 0.00 0.01 0.01 0.09 0.33 0.50 0.67 0.66 0.50
OCT 1986 0.01 0.00 0.00 0.00 0.00 0.04 0.18 0.41 0.52 0.53 0.45
NOV 1986 0.02 0.01 0.00 0.01 0.01 0.09 0.16 0.20 0.14 0.05 0.01
DEC 1986 0.04 0.01 0.00 0.00 0.00 0.04 0.08 0.02 0.00 0.00 0.00
JAN 1987 0.01 0.00 0.00 0.01 0.02 0.03 0.11 0.08 0.03 0.01 0.00
FEB 1987 0.00 0.00 0.00 0.00 0.01 0.05 0.10 0.15 0.13 0.07 0.02
MAR 1987 0.02 0.01 0.00 0.01 0.03 0.12 0.23 0.42 0.51 0.46 0.34
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Table 39. Analytical Predictions #2,j,1 continued

[1 2 3 1 4 5 6 7 8 9 1 1 i
APR 1987 0.00 0.00 0.00 0.00 0.01 0.04 0.15 0.31 0.48 0.57 0.62
MAY 1987 0.00 0.00 0.00 0.00 0.00 0.02 0.09 0.18 0.32 0.39 0.50
JUN 1987 0.00 0.00 0.00 0.00 0.00 0.00 0.02 0.07 0.19 0.27 0.41
JUL 1987 0.00 0.00 0.00 0.00 0.00 0.01 0.05 0.12 0.22 0.37 0.60
AUG 1987 0.00 0.00 0.00 0.00 0.00 0.01 0.05 0.14 0.28 0.49 0.60
SEP 1987 0.00 0.00 0.00 0.00 0.01 0.05 0.25 0.49 0.79 0.83 0.77
OCT 1987 0.00 0.00 0.00 0.00 0.00 0.04 0.21 0.42 0.59 0.65 0.64
NOV 1987 0.01 0.00 0.00 0.00 0.01 0.07 0.24 0.33 0.40 0.30 0.18
DEC 1987 0.01 0.00 0.00 0.00 0.01 0.03 0.13 0.18 0.11 0.04 0.01
JAN 1988 0.00 0.00 0.00 0.00 0.01 0.05 0.11 0.17 0.13 0.07 0.02
FEB 1988 0.00 0.00 0.00 0.00 0.01 0.05 0.11 0.21 0.26 0.23 0.15
MAR 1988 0.01 0.00 0.00 0.01 0.03 0.16 0.41 0.57 0.66 0.68 0.69
ARP 1988 C.00 0.00 0.00 0.00 0.00 0.05 0.23 0.42 0.67 0.79 0.84
MAY 1988 0.00 0.00 0.00 0.00 0.00 0.01 0.06 0.18 0.38 0.68 0.93
JUN 1988 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.05 0.13 0.34 0.65
JUL 1988 0.00 0.00 0.00 0.00 0.00 0.00 0.02 0.06 0.21 0.54 0.86
AUG 1988 0.00 0.00 0.00 0.00 0.00 0.00 0.03 0.10 0.31 0.68 0.89
SEP 1988 0.00 0.00 0.00 0.00 0.00 0.02 0.14 0.33 0.74 0.97 1.00
OCT 1988 0.00 0.00 0.00 0.00 0.00 0.02 0.12 0.29 0.63 0.89 0.95
NOV 1988 0.00 0.00 0.00 0.00 0.01 0.06 0.26 0.49 0.67 0.75 0.75
DEC 1988 0.00 0.00 0.00 0.00 0.01 0.08 0.26 0.45 0.53 0.38 0.25
JAN 1989 0.00 0.00 0.00 0.00 0.01 0.04 0.13 0.27 0.40 0.27 0.18
FEB 1989 0.00 0.00 0.00 0.00 0.00 0.03 0.19 0.37 0.51 0.40 0.34
MAR 1989 0.00 0.00 0.00 0.00 0.01 0.07 0.26 0.52 0.77 0.91 0.95
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Table 40. Analytical Predictions P2,j,1 continued

S1112 [31 4 I _ 1 6] 7 18] 9 110111
APR 1989 0.00 0.00 0.00 0.00 0.00 0.02 0.10 0.24 0.53 0.85 0.97
MAY 1989 0.00 0.00 0.00 0.00 0.00 0.00 0.02 0.09 0.26 0.61 0.93
JUN 1989 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.10 0.27 0.59
JUL 1989 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.04 0.16 0.48 0.85
AUG 1989 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.06 0.26 0.60 0.90
SEP 1989 0.00 0.00 0.00 0.00 0.00 0.01 0.09 0.27 0.65 0.96 1.00
OCT 1989 0.00 0.00 0.00 0.00 0.00 0.02 0.13 0.29 0.64 0.89 0.95
NOV 1989 0.00 0.00 0.00 0.00 0.01 0.06 0.30 0.56 0.83 0.92 0.91
DEC 1989 0.00 0.00 0.00 0.00 0.01 0.08 0.25 0.45 0.55 0.41 0.30
JAN 1990 0.00 0.00 0.00 0.00 0.01 0.04 0.13 0.29 0.40 0.30 0.21
FEB 1990 0.00 0.00 0.00 0.00 0.00 0.03 0.19 0.39 0.53 0.42 0.36
MAR 1990 0.00 0.00 0.00 0.00 0.01 0.06 0.25 0.52 0.77 0.91 0.95
APR 1990 0.00 0.00 0.00 0.00 0.00 0.02 0.10 0.23 0.55 0.85 0.97
MAY 1990 0.00 0.00 0.00 0.00 0.00 0.00 0.02 0.10 0.27 0.63 0.93
JUN 1990 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.03 0.11 0.31 0.63
JUL 1990 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.05 0.18 0.52 0.86
AUG 1990 0.00 0.00 0.00 0.00 0.00 0.00 0.02 0.08 0.27 0.64 0.90
SEP 1990 0.00 0.00 0.00 0.00 0.00 0.02 0.11 0.31 0.68 0.97 1.00
OCT 1990 0.00 0.00 0.00 0.00 0.00 0.02 0.14 0.30 0.67 0.87 0.92
NOV 1990 0.00 0.00 0.00 0.00 0.01 0.05 0.25 0.47 0.69 0.78 0.78
DEC 1990 0.00 0.00 0.00 0.00 0.01 0.07 0.26 0.45 0.54 0.39 0.27
JAN 1991 0.00 0.00 0.00 0.00 0.01 0.04 0.13 0.26 0.29 0.26 0.17
FEB 1991 0.00 0.00 0.00 0.00 0.00 0.03 0.18 0.34 0.49 0.38 0.32
MAR 1991 0.00 0.00 0.00 0.00 0.01 0.08 0.31 0.53 0.78 0.90 0.92
APR 1991 0.00 0.00 0.00 0.00 0.00 0.02 0.12 0.28 0.57 0.86 0.96
MAY 1991 0.00 0.00 0.00 0.00 0.00 0.00 0.05 0.12 0.30 0.64 0.94
JUN 1991 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.03 0.12 0.31 0.64
JUL 1991 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.05 0.19 0.52 0.86
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Table 41. Analytical Predictions P2j,1 continued

12 113 114 115 16 117 18 119 201 21[22
JAN 1985 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
FEB 1985 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
MAR 1985 0.18 0.08 0.02 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
APR 1985 0.58 0.49 0.39 0.26 0.13 0.04 0.01 0.00 0.00 0.00 0.00
MAY 1985 0.66 0.65 0.59 0.53 0.43 0.29 0.16 0.06 0.02 0.00 0.00
JUN 1985 0.59 0.56 0.48 0.42 0.32 0.21 0.11 0.04 0.01 0.00 0.00
JUL 1985 0.5 0.43 0.36 0.27 0.16 0.07 0.02 0.00 0.00 0.00 0.00
AUG 1985 0.39 0.34 0.25 0.15 0.06 0.02 0.00 0.00 0.00 0.00 0.00
SEP 1985 0.42 0.25 0.08 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00
OCT 1985 0.41 0.28 0.15 0.05 0.01 0.00 0.00 0.00 0.00 0.00 0.00
NOV 1985 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
DEC 1985 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
JAN 1986 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
FEB 1986 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
MAR 1986 0.12 0.04 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
APR 1986 0.52 0.43 0.32 0.19 0.07 0.02 0.00 0.00 0.00 0.00 0.00
MAY 1986 0.61 0.61 0.55 0.47 0.36 0.22 0.10 0.03 0.01 0.00 0.00
JUN 1986 0.57 0.58 0.44 0.37 0.27 0.16 0.07 0.02 0.00 0.00 0.00
JUL 1986 0.52 0.39 0.31 0.21 0.11 0.04 0.01 0.00 0.00 0.00 0.00
AUG 1986 0.35 0.29 0.20 0.10 0.03 0.01 0.00 0.00 0.00 0.00 0.00
SEP 1986 0.36 0.18 0.05 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
OCT 1986 0.36 0.24 0.11 0.03 0.00 0.00 0.00 0.00 0.00 0.00 0.00
NOV 1986 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
DEC 1986 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
JAN 1987 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
FEB 1987 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
MAR 1987 0.23 0.11 0.03 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
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Table 42. Analytical Predictions i2j,1 continued

112 13 1 14 1 15 16 1 17 1 18 [ 19 20 21 1221
APR 1987 0.64 0.65 0.48 0.37 0.23 0.10 0.03 0.00 0.00 0.00 0.00
MAY 1987 0.73 0.73 0.71 0.61 0.53 0.4 0.26 0.14 0.05 0.01 0.00
JUN 1987 0.67 0.69 0.63 0.52 0.45 0.34 0.22 0.12 0.04 0.01 0.00
JUL 1987 0.65 0.63 0.51 0.44 0.34 0.22 0.11 0.04 0.01 0.00 0.00
AUG 1987 0.62 0.52 0.47 0.38 0.26 0.15 0.06 0.01 0.00 0.00 0.00
SEP 1987 0.71 0.48 0.31 0.13 0.03 0.00 0.00 G.00 0.00 0.00 0.00
OCT 1987 0.56 0.48 0.35 0.2 0.07 0.02 0.00 0.00 0.00 0.00 0.00
NOV 1987 0.07 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
DEC 1987 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
JAN 1988 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
FEB 1988 0.07 0.02 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
MAR 1988 0.52 0.36 0.17 0.04 0.00 0.00 0.00 0.00 0.00 0.00 0.00
ARP 1988 0.85 0.83 0.84 0.77 0.61 0.44 0.23 0.07 0.01 0.00 0.00
MAY 1988 0.98 0.98 0.97 0.92 0.88 0.84 0.7 0.55 0.35 0.17 0.05
JUN 1988 0.9 0.94 0.93 0.9 0.84 0.82 0.73 0.65 0.54 0.41 0.27
JUL 1988 0.96 0.97 0.95 0.86 0.84 0.8 0.65 0.41 0.15 0.02 0.00
AUG 1988 0.94 0.94 0.88 0.84 0.79 0.6 0.34 0.09 0.01 0.00 0.00
SEP 1988 1.00 0.99 0.94 0.86 0.64 0.43 0.19 0.03 0.00 0.00 0.00
OCT 1988 0.95 0.91 0.86 0.73 0.66 0.57 0.45 0.3 0.16 0.06 0.02
NOV 1988 0.74 0.58 0.48 0.34 0.19 0.07 0.02 0.00 0.00 0.00 0.00
DEC 1988 0.10 0.02 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
JAN 1989 0.08 0.02 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
FEB 1989 0.24 0.13 0.04 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00
MAR 1989 0.91 0.83 0.59 0.39 0.16 0.03 0.00 0.00 0.00 0.00 0.00
APR 1989 1.00 1.00 1.00 1.00 0.98 0.92 0.75 0.62 0.43 0.22 0.07
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Table 43. Analytical Predictions 22,j,1 continued

[ 12 113 14 1 15 16 117 18 1 19 20 121 22
MAY 1989 0.99 1.00 1.00 1.00 1.00 1.00 1.00 0.99 0.91 0.76 0.64
JUN 1989 0.94 1.00 1.00 1.00 1.00 0.99 0.92 0.89 0.84 0.71 0.52
JUL 1989 0.98 1.00 1.00 1.00 0.98 0.9 0.88 0.85 0.67 0.45 0.2
AUG 1989 0.98 1.00 0.99 0.98 0.9 0.88 0.77 0.6 0.34 0.10 0.01
SEP 1989 1.00 1.00 1.00 0.97 0.9 0.71 0.54 0.31 0.11 0.63 0.00
OCT 1989 0.94 0.9 0.85 0.72 0.65 0.55 0.43 0.28 0.14 0.05 0.01
NOV 1989 0.83 0.65 0.45 0.19 0.03 0.00 0.00 0.00 0.00 0.00 0.00
DEC 1989 0.15 0.04 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
JAN 1989 0.11 0.04 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
FEB 1990 0.26 0.15 0.06 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00
MAR 1990 0.92 0.83 0.6 0.41 0.18 0.03 0.00 0.00 0.00 0.00 0.00
APR 1990 1.00 1.00 1.00 1.00 0.98 0.92 0.74 0.59 0.39 0.18 0.05
MAY 1990 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.98 0.80 0.7 0.54
JUN 1990 0.95 1.00 1.00 1.00 0.99 0.95 0.89 0.87 0.73 0.55 0.31
JUL 1990 0.98 0.99 0.99 0.98 0.91 0.87 0.85 0.71 0.51 0.24 0.06
AUG 1990 0.98 0.99 0.97 0.92 0.87 0.84 0.67 0.43 0.16 0.02 0.00
SEP 1990 1.00 1.00 0.99 0.92 0.86 0.62 0.41 0.17 0.03 0.00 0.00
OCT 1990 0.91 0.87 0.82 0.7 0.62 0.51 0.37 0.22 0.10 0.03 0.01
NOV 1990 0.78 0.63 0.54 0.41 0.26 0.13 0.04 0.01 0.00 0.00 0.00
DEC 1990 0.12 0.02 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
JAN 1991 0.08 0.02 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
FEB 1991 0.22 0.11 0.04 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00
MAR 1991 0.87 0.79 0.51 0.29 0.08 0.64 0.00 0.00 0.00 0.00 0.00
APR 1991 0.99 1.00 1.00 0.98 0.94 0.88 0.67 0.48 0.26 0.08 0.01
MAY 1991 1.00 1.00 1.00 1.00 1.00 0.99 0.96 0.91 0.74 0.6 0.41
JUN 1991 0.96 1.00 1.00 1.00 0.98 0.88 0.87 0.79 0.65 0.42 0.17
JUL 1991 0.97 0.99 0.98 0.94 0.86 0.85 0.74 0.56 0.29 0.07 0.01
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Appendix E. Normalized Analytical Database for Event Type 2 and Time Block 1

This appendix contains monthly observations of the normalized analytical predictions jij k

for event type 2 and time block 1. The database covers all twenty-two geographical regions from

January of 1985 through July of 1991. The database consists of 1,738 normalized P2,j,'s. Each

column represents a geographical region and each row represents a month.

Table 44. Normalized Analytical Predictions P2,j,1

[1 213 14 5[6 7 8 9 110111
JAN 1985 0.03 0.00 0.00 0.03 0.07 0.10 0.31 0.28 0.14 0.03 0.00
FEB 1985 0.00 0.00 0.00 0.00 0.02 0.09 0.19 0.28 0.25 0.13 0.04
MAR 1985 0.01 0.00 0.00 0.00 0.02 0.05 0.09 0.17 0.20 0.20 0.13
APR 1985 0.00 0.00 0.00 0.00 0.00 0.01 0.04 0.07 0.11 0.14 0.15
MAY 1985 0.00 0.00 0.00 0.00 0.00 0.00 0.02 0.04 0.06 0.07 0.09
JUN 1985 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.02 0.04 0.06 0.10
JUL 1985 0.00 0.00 0.00 0.00 0.00 0.00 0.02 0.04 0.07 0.10 0.17
AUG 1985 0.00 0.00 0.00 0.00 0.00 0.00 0.02 0.05 0.10 0.15 0.18
SEP 1985 0.00 0.00 0.00 0.00 0.00 0.02 0.08 0.14 0.19 0.19 0.17
OCT 1985 0.00 0.00 0.00 0.00 0.09 0.01 0.07 0.13 0.17 0.18 0.15
NOV 1985 0.03 0.01 0.00 0.01 0.01 0.09 0.21 0.36 0.19 0.08 0.01
DEC 1985 0.16 0.04 0.00 0.00 0.00 0.40 0.32 0.08 0.00 0.00 0.00
JAN 1986 0.04 0.00 0.00 0.04 0.07 0.11 0.41 0.26 0.07 0.00 0.00
FEB 1986 0.00 0.00 0.00 0.02 0.02 0.09 0.18 0.37 0.19 0.11 0.04
MAR 1986 0.01 0.01 0.00 0.01 0.02 0.06 0.10 0.20 0.22 0.17 0.12
APR 1986 0.00 0.00 0.00 0.00 0.00 0.01 0.05 0.08 0.12 0.15 0.16
MAY 1986 0.00 0.00 0.00 0.00 0.00 0.00 0.02 0.04 0.07 0.08 0.09
JUN 1986 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.02 0.05 0.07 0.10
JUL 1986 0.00 0.00 0.00 0.00 0.00 0.00 0.02 0.04 0.07 0.11 0.17
AUG 1986 0.00 0.00 0.00 0.00 0.00 0.00 0.03 0.06 0.11 0.16 0.19
SEP 1986 0.00 0.00 0.00 0.00 0.00 0.03 0.10 0.15 0.20 0.20 0.15
OCT 1986 0.00 0.00 0.00 0.00 0.00 0.01 0.06 0.14 0.18 0.18 0.16
NOV 1986 0.03 0.01 0.00 0.01 0.01 0.13 0.23 0.29 0.20 0.07 0.01
DEC 1986 0.21 0.05 0.00 0.00 0.00 0.21 0.42 0.11 0.00 0.00 0.00
JAN 1987 0.03 0.00 0.00 0.03 0.07 0.10 0.37 0.27 0.10 0.03 0.00
FEB 1987 0.00 0.00 0.00 0.00 0.02 0.09 0.19 0.28 0.25 0.13 0.04
MAR 1987 0.01 0.00 0.00 0.00 0.01 0.05 0.09 0.17 0.20 0.18 0.13
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Table 45. Normalized Analytical Predictions P2,j,1 continued

_ 1 1 2 3 1 4 i5 6 7 8 9 10 i11j
APR 1987 0.00 0.00 0.00 0.00 0.00 0.01 0.03 0.07 0.10 0.12 0.13
MAY 1987 0.00 0.00 0.00 0.00 0.00 0.00 0.02 0.03 0.06 0.07 0.09
JUN 1987 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.02 0.04 0.06 0.09
JUL 1987 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.03 0.05 0.09 0.14
AUG 1987 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.03 0.07 0.12 0.15
SEP 1987 0.00 0.00 0.00 0.00 0.00 0.01 0.05 0.10 0.16 0.17 0.16
OCT 1987 0.00 0.00 0.00 0.00 0.00 0.01 0.05 0.10 0.14 0.15 0.15
NOV 1987 0.01 0.00 0.00 0.00 0.01 0.04 0.15 0.20 0.25 0.19 0.11
DEC 1987 0.02 0.00 0.00 0.00 0.02 0.06 0.25 0.35 0.21 0.08 0.02
JAN 1988 0.00 0.00 0.00 0.00 0.02 0.09 0.20 0.30 0.23 0.13 0.04
FEB 1988 0.00 0.00 0.00 0.00 0.01 0.05 0.10 0.19 0.23 0.21 0.14
MAR 1988 0.00 0.00 0.00 0.00 0.01 0.04 0.10 0.13 0.15 0.16 0.16
ARP 1988 0.00 0.00 0.00 0.00 0.00 0.01 0.03 0.05 0.09 0.10 0.11
MAY 1988 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.02 0.04 0.07 0.10
JUN 1988 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.01 0.04 0.07
JUL 1988 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.03 0.07 0.10
AUG 1988 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.04 0.09 0.12
SEP 1988 0.00 0.00 0.00 0.00 0.00 0.00 0.02 0.04 0.CJ 0.12 0.12
OCT 1988 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.03 0.07 0.10 0.11
NOV 1988 0.00 0.00 0.00 0.00 0.00 0.01 0.05 0.09 0.12 0.14 0.14
DEC 1988 0.00 0.00 0.00 0.00 0.00 0.04 0.13 0.22 0.25 0.18 0.12
JAN 1989 0.00 0.00 0.00 0.00 0.01 0.03 0.09 0.19 0.29 0.19 0.13
FEB 1989 0.00 0.00 0.00 0.00 0.00 0.01 0.08 0.16 0.23 0.18 0.15
MAR 1989 0.00 0.00 0.00 0.00 0.00 0.01 0.04 0.08 0.12 0.14 0.15
APR 1989 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.02 0.05 0.08 0.09
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Table 46. Normalized Analytical Predictions 12j,1 continued

__. _11 2 [3 1 4 5 [ 6 7 8 9 10 IF ]

MAY 1989 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.02 0.05 0.08
JUN 1989 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.03 0.05
JUL 1989 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.02 0.05 0.08
AUG 1989 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.03 0.06 0.10
SEP 1989 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.03 0.06 0.09 0.10
OCT 1989 0.00 0.00 0.00 0.00 0.00 0.00 0.02 0.03 0.08 0.11 0.11
NOV 1989 0.00 0.00 0.00 0.00 0.00 0.01 0.05 0.10 0.14 0.16 0.16
DEC 1989 0.00 0.00 0.00 0.00 0.00 0.04 0.11 0.20 0.25 0.18 0.13
JAN 1990 0.00 0.00 0.00 0.00 0.01 0.03 0.08 0.19 0.26 0.19 0.14
FEB 1990 0.00 0.00 0.00 0.00 0.00 0.01 0.08 0.16 0.22 0.18 0.15
MAR 1990 0.00 0.00 0.00 0.00 0.00 0.01 0.04 0.08 0.12 0.14 0.15
APR 1990 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.02 0.05 0.08 0.09
MAY 1990 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.02 0.05 0.08
JUN 1990 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.03 0.06
JUL 1990 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.02 0.05 0.09
AUG 1990 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.03 0.07 0.10
SEP 1990 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.03 0.07 0.11 0.11
OCT 1990 0.00 0.00 0.00 0.00 0.00 0.00 0.02 0.04 0.08 0.11 0.11
NOV 1990 0.00 0.00 0.00 0.00 0.00 0.01 0.04 0.08 0.12 0.13 0.13
DEC 1990 0.00 0.00 0.00 0.00 0.00 0.03 0.12 0.21 0.2 0.18 0.13
JAN 1991 0.00 0.00 0.00 0.00 0.01 0.03 0.10 0.21 0.23 0.21 0.13
FEB 1991 0.00 0.00 0.00 0.00 0.00 0.01 0.08 0.16 0.23 0.18 0.15
MAR 1991 0.00 0.00 0.00 0.00 0.00 0.01 0.05 0.08 0.12 0.13 0.14
APR 1991 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.03 0.06 0.09 0.10
MAY 1991 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.03 0.05 0.08
JUN 1991 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.03 0.07
JUL 1991 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.02 0.06 0.10
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Table 47. Normalized Analytical Predictions P2j,l continued

[12 1 13 1 14 115 1 16 1 17 1 18 (19 20 f 21 22

JAN 1985 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
FEB 1985 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
MAR 1985 0.08 0.03 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
APR 1985 0.15 0.12 0.10 0.07 0.03 0.01 0.00 0.00 0.00 0.00 0.00
MAY 1985 0.14 0.14 0.12 0.11 0.09 0.06 0.03 0.01 0.00 0.00 0.00
JUN 1985 0.16 0.16 0.13 0.12 0.09 0.06 0.03 0.01 0.00 0.00 0.00
JUL 1985 0.17 0.14 0.12 0.09 0.05 0.02 0.01 0.00 0.00 0.00 0.00
AUG 1985 0.16 0.14 0.10 0.06 0.02 0.01 0.00 0.00 0.00 0.00 0.00
SEP 1985 0.11 0.07 0.02 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
OCT 1985 0.13 0.09 0.05 0.02 0.00 0.00 0.00 0.00 0.00 0.00 0.00
NOV 1985 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
DEC 1985 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
JAN 1986 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
FEB 1986 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
MAR 1986 0.06 0.02 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
APR 1986 0.15 0.12 0.09 0.05 0.02 0.01 0.00 0.00 0.00 0.00 0.00
MAY 1986 0.14 0.14 0.13 0.11 0.08 0.05 0.02 0.01 0.00 0.00 0.00
JUN 1986 0.17 0.17 0.13 0.11 0.08 0.05 0.02 0.01 0.00 0.00 0.00
JUL 1986 0.19 0.14 0.11 0.08 0.04 0.01 0.00 0.00 0.00 0.00 0.00
AUG 1986 0.16 0.13 0.09 0.05 0.01 0.00 0.00 0.00 0.00 0.00 0.00
SEP 1986 0.11 0.05 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
OCT 1986 0.13 0.08 0.04 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00
NOV 1986 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
DEC 1986 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
JAN 1987 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
FEB 1987 0.00 0.00 0.00 0.00 0.00 0.00 00.00 .00 0.00 0.00 0.00
MAR 1987 0.09 0.04 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
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Table 48. Normalized Analytical Predictions P2j,l continued

._t 12 1 13 1 14 1 15 1 16 1 17 1 18 19 1 20 2 1 1 2
APR 1987 0.14 0.14 0.10 0.08 0.05 0.02 0.01 0.00 0.00 0.00 0.00
MAY 1987 0.13 0.13 0.13 0.11 0.09 0.07 0.05 0.02 0.01 0.00 0.00
JUN 1987 0.14 0.15 0.14 0.11 0.10 0.07 0.05 0.03 0.01 0.00 0.00
JUL 1987 0.15 0.15 0.12 0.10 0.08 0.05 0.03 0.01 0.00 0.00 0.00
AUG 1987 0.15 0.13 0.12 0.09 0.06 0.04 0.01 0.00 0.00 0.00 0.00
SEP 1987 0.15 0.10 0.06 0.03 0.01 0.00 0.00 0.00 0.00 0.00 0.00
OCT 1987 0.13 0.11 0.08 0.05 0.02 0.00 0.00 0.00 0.00 0.00 0.00
NOV 1987 0.04 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
DEC 1987 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
JAN 1988 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
FEB 1988 0.06 0.02 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
MAR 1988 0.12 0.08 0.04 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00
ARP 1988 0.11 0.11 0.11 0.10 0.08 0.06 0.03 0.01 0.00 0.00 0.00
MAY 1988 0.10 0.10 0.10 0.10 0.09 0.09 0.07 0.06 0.04 0.02 0.01
JUN 1988 0.10 0.10 0.10 0.10 0.09 0.09 0.08 0.07 0.06 0.05 0.03
JUL 1988 0.12 0.12 0.11 0.10 0.10 0.10 0.08 0.05 0.02 0.00 0.00
AUG 1988 0.13 0.13 0.12 0.11 0.11 0.08 0.05 0.01 0.00 0.00 0.00
SEP 1988 0.12 0.12 0.11 0.10 0.08 0.05 0.02 0.00 0.00 0.00 0.00
OCT 1988 0.11 0.11 0.10 0.09 0.08 0.07 0.05 0.04 0.02 0.01 0.00
NOV 1988 0.14 0.11 0.09 0.06 0.04 0.01 0.00 0.00 0.00 0.00 0.00
DEC 1988 0.05 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
JAN 1989 0.06 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
FEB 1989 0 11 0.06 0.02 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
MAR 1989 0.14 0.13 0.09 0.06 0.03 0.00 0.00 0.00 0.00 0.00 0.00
APR 1989 0.09 0.09 0.09 0.09 0.09 0.09 0.07 0.06 0.04 0.02 0.01
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Table 49. Normalized Analytical Predictions P2j,i1 continued

_ 12 [ 13 14 1 15 16 1 17 118 19] 20 1 21 1 22
MAY 1989 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.07 0.06 0.05
JUN 1989 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.08 0.08 0.07 0.05
JUL 1989 0.09 0.10 0.10 0.10 0.09 0.09 0.08 0.08 0.06 0.04 0.02
AUG 1989 0.10 0.11 0.11 0.10 0.10 0.09 0.08 0.06 0.04 0.01 0.00
SEP 1989 0.10 0.10 0.10 0.10 0.09 0.07 0.05 0.03 0.01 0.06 0.00
OCT 1989 0.11 0.11 0.10 0.09 0.08 0.07 0.05 0.03 0.02 0.01 0.00
NOV 1989 0.14 0.11 0.08 0.03 0.01 0.00 0.00 0.00 0.00 0.00 0.00
DEC 1989 0.07 0.02 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
JAN 1990 0.07 0.03 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
FEB 1990 0.11 0.06 0.03 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
MAR 1990 0.14 0.13 0.09 0.06 0.03 0.00 0.00 0.00 0.00 0.00 0.00
APR 1990 0.09 0.09 0.09 0.09 0.09 0.09 0.07 0.06 0.04 0.02 0.00
MAY 1990 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.07 0.06 0.05
JUN 1990 0.09 0.10 0.10 0.10 0.10 0.09 0.09 0.08 0.07 0.05 0.03
JUL 1990 0.10 0.10 0.10 0.10 0.09 0.09 0.09 0.07 0.05 0.02 0.01
AUG 1990 0.11 0.11 0.11 0.11 0.10 0.10 0.08 0.05 0.02 0.00 0.00
SEP 1990 0.11 0.11 0.11 0.10 0.09 0.07 0.05 0.02 0.00 0.00 0.00
OCT 1990 0.11 0.11 0.10 0.09 0.08 0.06 0.05 0.03 0.01 0.00 0.00
NOV 1990 0.13 0.11 0.09 0.07 0.04 0.02 0.01 0.00 0.00 0.00 0.00
DEC 1990 0.06 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
JAN 1991 0.06 0.02 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
FEB 1991 0.10 0.05 0.02 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
MAR 1991 0.13 0.12 0.08 0.04 0.01 0.10 0.00 0.00 0.00 0.00 0.00
APR 1991 0.10 0.10 0.10 0.10 0.09 0.09 0.07 0.05 0.03 0.01 0.00
MAY 1991 0.09 0.09 0.09 0.09 0.09 0.08 0.08 0.08 0.06 0.05 0.04
JUN 1991 0.10 0.10 0.10 0.10 0.10 0.09 0.09 0.08 0.07 0.04 0.02
JUL 1991 0.11 0.11 0.11 0.11 0.10 0.10 0.08 0.06 0.03 0.01 0.00
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Appendix F. Database of NHA for Event Type 2 and Time Block 1

This appendix contains monthly observations of the normalized analytical predictions /ijk

subtracted from the historical observed frequencies Xij2 for event type 2 and time block 1. The

database covers all twenty-two geographical regions from January of 1985 through July of 1991.

The database consists of 1,738 NHA2,j,l's. Each column represents a geographical region and each

row represents a month.

Table 50. NHA2,j,1

1 2 1 3 4 5 1 6 ] 7 8 1 9 1 10 11
JAN 1985 -0.03 0.00 0.00 -0.03 0.43 0.15 -0.31 -0.28 -0.01 -0.03 0.13
FEB 1985 0.00 0.00 0.00 0.00 -0.02 0. 1991 -0.19 -0.28 -0.25 -0.13 -0.04
MAR 1985 -0.01 0.00 0.00 0.00 -0.02 0.12 0.24 0.16 -0.20 -0.20 -0.13
APR 1985 0.00 0.00 0.00 0.50 0.00 -0.01 -0.04 -0.07 0.39 -0.14 -0.15
MAY 1985 0.00 0.00 0.00 0.00 0.00 0.00 -0.02 -0.04 -0.06 0.60 -0.09
JUN 1985 0.00 0.00 0.00 0.00 0.00 0.00 -0.01 0.58 0.36 -0.06 -0.10
JUL 1985 0.00 0.00 0.00 0.00 0.00 0.00 -0.02 -0.04 -0.07 -0.10 -0.17
AUG 1985 0.00 0.00 0.00 0.00 0.00 0.00 -0.02 -0.05 -0.10 -0.15 -0.18
SEP 1985 0.00 0.00 0.00 0.89 0.00 -0.02 -0.08 -0.14 -0.19 -0.19 -0.17
OCT 1985 0.00 0.00 0.21 0.00 0.00 0.20 0.11 -0.02 -0.03 -0.14 -0.15
NOV 1985 -0.03 -0.01 0.00 -0.01 -0.01 -0.09 -0.21 -0.36 0.48 -0.08 0.32
DEC 1985 -0.16 -0.04 0.00 1.00 0.00 -0.40 -0.32 -0.08 0.00 0.00 0.00
JAN 1986 -0.04 0.00 0.00 -0.04 -0.07 -0.11 -0.41 -0.26 0.13 0.00 0.40
FEB 1986 0.0) 0.00 0.00 -0.02 -0.02 -0.09 -0.18 -0.37 -0.19 -0.11 -0.04
MAR 1986 -0.01 -0.01 0.00 -0.01 0.98 -0.06 -0.10 -0.20 -0.22 -0.17 -0.12
APR 1986 0.00 0.00 0.00 0.00 0.00 -0.01 -0.05 -0.08 -0.12 -0.15 -0.16
MAY 1985 0.00 0.00 0.00 0.00 0.00 0.00 0.48 0.13 -0.07 -0.08 -0.09
JUN 1986 0.00 0.00 0.00 0.00 0.00 0.00 -0.01 -0.02 -0.05 0.04 -0.10
JUL 1986 0.00 0.00 0.00 0.00 0.00 0.00 -0.02 -0.04 -0.07 -0.11 -0.17
AUG 1986 0.00 0.00 0.00 0.00 0.00 0.00 -0.03 -0.06 -0.11 -0.16 -0.19
SEP 1986 0.00 0.00 0.00 0.00 0.00 -0.03 -0.10 -0.15 -0.20 -0.20 -0.15
OCT 1986 0.00 0.00 0.00 0.00 0.00 -0.01 -0.06 -0.14 -0.18 -0.18 -0.16
NOV 1986 -0.03 -0.01 0.00 -0.01 -0.01 -0.13 -0.23 -0.29 -0.20 -0.07 -0.01
DEC 1986 -0.21 -0.05 0.00 0.00 0.00 -0.21 -0.42 -0.11 0.00 0.00 0.00
JAN 1987 -0.03 0.00 0.00 -0.03 -0.07 -0.10 -0.37 -0.27 -0.10 -0.03 0.00
FEB 1987 0.00 0.00 0.00 0.28 0.15 0.30 -0.13 -0.22 -0.25 -0.13 -0.04
MAR 1987 -0.01 0.00 0.00 0.10 0.25 0.09 0.21 -0.01 -0.20 -0.15 -0.12
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Table 51. NHA2,j,, continued

1 2 1 3 1 4 5 1 6 7 1 8 19 110 1111
APR 1987 0.00 0.00 0.00 0.00 0.00 -0.01 0.01 0.22 -0.06 -0.12 -0.13
MAY 1987 0.00 0.00 0.00 0.00 0.00 0.00 -0.02 -0.03 0.61 0.15 -0.09
JUN 1987 0.00 0.00 0.00 0.00 0.00 0.29 0.00 -0.02 -0.04 0.51 -0.09
JUL 1987 0.00 0.00 0.00 0.00 0.00 0.00 -0.01 -0.03 -0.05 -0.09 -0.14
AUG 1987 0.00 0.00 0.00 0.00 0.00 0.02 0.05 0.02 0.31 -0.07 -0.12
SEP 1987 0.00 0.00 0.00 0.03 0.00 0.04 0.38 0.01 -0.08 -0.09 -0.05
OCT 1987 0.00 0.00 0.00 0.00 0.00 0.15 -0.02 -0.07 -0.05 -0.09 0.16
NOV 1987 -0.01 0.00 0.00 0.00 0.04 0.01 0.15 -0.04 -0.17 -0.14 -0.06
DEC 1987 -0.02 0.03 0.00 0.00 -0.02 -0.03 -0.08 -0.25 0.03 -0.08 0.15
JAN 1988 0.00 0.02 0.00 0.02 0.12 0.03 0.04 -0.18 -0.09 -0.13 0.03
FEB 1988 0.00 0.00 0.00 0.00 -0.01 0.45 0.40 -0.19 -0.23 -0.21 -0.14
MAR 1988 0.00 0.00 0.08 0.00 -0.01 0.04 0.57 -0.13 0.03 -0.16 -0.16
ARP 1988 0.00 0.00 0.00 0.08 0.00 0.22 0.05 0.10 -0.09 -0.10 -0.03
MAY 1988 0.00 0.00 0.08 0.00 0.00 0.08 0.66 -0.02 0.14 -0.07 -0.10
JUN 1988 0.00 0.00 0.00 0.00 0.00 0.00 0.00 -0.01 -0.01 -0.04 0.43
JUL 1988 0.00 0.00 0.00 0.00 0.00 0.00 0.04 -0.01 0.01 0.01 0.48
AUG 1988 0.00 0.00 0.00 0.00 0.00 0.00 0.06 0.01 0.05 -0.09 -0.01
SEP 1988 0.00 0.00 0.00 0.00 0.02 0.06 0.16 0.06 0.03 0.17 0.04
OCT 1988 0.00 0.00 0.00 0.00 0.00 0.00 0.03 -0.02 0.37 0.27 -0.07
NOV 1988 0.00 0.00 0.00 0.00 0.00 0.11 0.09 -0.06 0.13 0.02 -0.09
DEC 1988 0.00 0.00 0.00 0.15 0.15 0.08 -0.13 -0.19 0.07 -0.12 0.03
JAN 1989 0.00 0.00 0.15 0.02 0.34 0.11 -0.02 -0.09 -0.20 -0.19 -0.10
FEB 1989 0.00 0.00 0.00 0.02 0.02 -0.01 0.12 0.24 -0.23 -0.18 0.18
MAR 1989 0.00 0.00 0.00 0.00 0.15 0.02 0.34 -0.08 -0.06 -0.14 -0.15
APR 1989 0.00 0.00 0.00 0.00 0.00 0.00 0.3A -0.01 0.10 -0.07 -0.07
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Table 52. NHA2,j continued

1 2 1 3 1 4 5 1 6 1 7 ] 8 3 9 10 i11

MAY 1989 0.00 0.00 0.00 0.00 0.00 0.01 0.00 -0.01 -0.01 -0.05 -0.07
JUN 1989 0.00 0.00 0.00 0.00 0.02 0.00 0.02 0.09 0.03 -0.03 -0.03
JUL 1989 0.00 0.00 0.00 0.00 0.01 0.00 0.02 0.02 0.01 -0.04 -0.07
AUG 1989 0.00 0.00 0.00 0.00 0.00 0.00 0.00 -0.01 0.00 -0.06 -0.03
SEP 1989 0.00 0.02 0.00 0.00 0.02 0.00 0.15 -0.01 0.20 -0.04 -0.08
OCT 1989 0.00 9.00 0.00 0.00 0.00 0.00 0.18 -0.03 -0.08 0.17 -0.07
NOV 1989 0.00 0.00 0.00 0.00 0.03 0.02 0.52 -0.10 0.12 -0.13 -0.13
DEC 1989 0.00 0.00 0.00 0.00 0.00 -0.04 0.09 -0.20 -0.25 0.62 -0.13
JAN 1990 0.03 0.00 0.00 0.00 -0.01 0.02 0.57 0.03 -0.26 -0.19 -0.14
FEB 1990 0.00 0.00 0.00 0.00 0.15 -0.01 0.33 0.05 -0.22 0.07 -0.15
MAR I0 0.00 0.00 0.00 0.00 0.00 -0.01 0.05 0.06 0.09 0.15 -0.13
APR 1990 0.00 0.00 0.00 0.00 0.00 0.00 0.00 -0.02 0.24 0.33 -0.09
MAY 1990 0.00 0.00 0.00 0.00 0.00 0.00 0.00 -0.01 0.03 -0.05 0.15
JUN 1990 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00 -0.02 0.18
JUL 1990 0.00 0.00 0.00 0.00 0.00 0.02 0.00 -0.01 0.02 -0.05 0.17
AUG 1990 0.00 0.00 0.00 0.00 0.00 0.08 0.05 -0.01 0.10 -0.07 0.43
SEP 1990 0.02 0.00 0.00 0.00 0.00 0.00 -0.01 -0.03 -0.06 -0.11 0.63
OCT 1990 0.00 0.00 0.00 0.00 0.05 0.12 0.12 -0.02 0.02 -0.09 0.43
NOV 1990 0.00 0.00 0.00 0.00 0.00 -0.01 0.83 0.01 -0.12 -0.13 -0.13
DEC 1990 0.00 0.10 0.10 0.00 0.00 -0.03 0.58 -0.21 -0.25 -0.08 -0.13
JAN 1991 0.00 0.00 0.00 0.00 0.07 -0.03 0.78 -0.21 -0.21 -0.21 -0.11
FEB 1991 0.00 0.00 0.00 0.00 0.04 -0.01 0.38 -0.14 -0.23 -0.18 0.23
MAR 1991 0.00 0.00 0.00 0.00 0.00 -0.01 0.22 -0.06 0.13 0.00 -0.06
APR 1991 0.00 0.00 0.00 0.00 0.00 0.00 0.05 -0.03 0.21 -0.09 0.28
MAY 1991 0.00 0.00 0.00 0.00 0.00 0.00 0.01 -0.01 0.07 -0.01 0.49
JUN 1991 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.02 0.08 0.59
JUL 1991 0.00 0.00 0.00 0.00 0.00 0.00 0.00 -0.01 0.03 -0.04 0.54
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Table 53. NHA 2 j,l continued

1121 13 114 15 [ 16 17 1 18 1 19 1 2021122
JAN 1985 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
FEB 1985 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
MAR 1985 -0.08 -0.03 -0.01 0.17 0.00 0.00 0.00 0.00 0.00 0.00 0.00
APR 1985 -0.15 -0.12 -0.10 -0.07 -0.03 -0.01 0.00 0.00 0.00 0.00 0.00
MAY 1985 -0.14 0.19 -0.12 -0.11 -0.09 -0.06 -0.03 -0.01 0.00 0.00 0.00
JUN 1985 -0.16 -0.16 -0.13 -0.12 -0.09 -0.06 -0.03 -0.01 0.00 0.00 0.00
JUL 1985 -0.17 -0.14 -0.12 -0.09 -0.05 -0.02 -0.01 0.00 0.00 0.00 0.00
AUG 1985 -0.16 -0.14 -0.10 -0.06 -0.02 -0.01 0.00 0.00 0.00 0.00 0.00
SEP 1985 -0.11 0.04 -0.02 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
OCT 1985 -0.13 -0.02 -0.05 -0.02 0.00 0.04 0.00 0.00 0.00 0.00 0.00
NOV 1985 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
DEC 1985 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
JAN 1986 0.40 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
FEB 1986 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
MAR 1986 -0.06 -0.02 -0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
APR 1986 -0.15 -0.12 -0.09 -0.05 -0.02 -0.01 0.00 0.00 0.00 0.00 0.00
MAY 1986 -0.14 -0.14 -0.13 -0.11 0.25 -0.05 -0.02 -0.01 0.00 0.00 0.00
JUN 1986 -0.17 -0.17 0.65 -0.11 0.03 -0.05 -0.02 -0.01 0.00 0.00 0.00
JUL 1986 -0.19 -0.14 -0.11 -0.08 -0.04 -0.01 0.00 0.00 0.00 0.00 0.00
AUG 1986 -0.16 -0.13 -0.09 -0.05 -0.01 0.00 0.00 0.00 0.00 0.00 0.00
SEP 1986 -0.11 -0.05 -0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
OCT 1986 -0.13 -0.08 -0.04 -0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00
NOV 1986 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
DEC 1986 0.25 0.50 0.00 0.00 0.25 0.00 0.00 0.00 0.00 0.00 0.00
JAN 1987 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
FEB 1987 0.00 0.06 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
MAR 1987 -0.09 -0.04 -0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
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Table 54. NHA2 j, 1 continued

___ 12 13 1 14 15 1 16 1 17 J 18 I 19 1 20 121 1 22

APR 1987 0.44 -0.14 -0.10 -0.04 -0.05 -0.02 -0.01 0.00 0.00 0.00 0.00
MAY 1987 -0.13 -0.07 -0.07 -0.11 -0.09 -0.07 -0.05 -0.02 -0.01 0.00 0.00
JUN 1987 -0.14 -0.01 -0.14 -0.11 -0.10 -0.07 -0.05 -0.03 -0.01 0.00 0.00
JUL 1987 -0.15 -0.15 -0.12 -0.10 -0.08 -0.05 -0.03 -0.01 0.00 0.00 0.00
AUG 1987 -0.07 0.00 0.01 -0.07 -0.06 -0.01 0.04 0.00 0.00 0.00 0.00
SEP 1987 -0.10 -0.07 -0.06 -0.03 -0.01 0.03 0.00 0.00 0.00 0.00 0.00
OCT 1987 -0.10 -0.05 -0.05 0.11 -0.02 0.00 0.03 0.00 0.00 0.00 0.00
NOV 1987 -0.02 0.05 0.03 0.00 0.00 0.08 0.02 0.08 0.00 0.00 0.00
DEC 1987 0.03 0.14 0.03 0.00 0.03 0.00 0.00 0.00 0.00 0.00 0.00
JAN 1988 0.05 0.00 0.05 0.00 0.02 0.00 0.00 0.00 0.00 0.00 0.00
FEB 1988 -0.06 -0.02 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
MAR 1988 -0.12 -0.08 -0.04 -0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00
ARP 1988 -0.03 0.20 -0.11 -0.10 -0.08 -0.06 -0.03 -0.01 0.00 0.00 0.00
MAY 1988 -0.10 -0.10 -0.10 -0.10 -0.09 -0.09 -0.07 -0.06 -0.04 -0.02 -0.01
JUN 1988 0.23 -0.10 -0.10 0.07 -0.09 -0.09 -0.08 -0.C7 -0.06 -0.05 -0.03
JUL 1988 -0.06 0.02 -0.05 -0.10 -0.10 -0.10 -0.08 -0.05 -0.02 0.00 0.00
AUG 1988 -0.13 0.11 -0.08 -0.01 0.00 0.06 0.03 0.00 0.00 0.00 0.00
SEP 1988 -0.08 -0.10 -0.11 -0.10 -0.08 -0.05 -0.02 0.00 0.00 0.00 0.00
OCT 1988 -0.04 -0.11 -0.09 -0.09 -0.07 -0.07 -0.04 -0.04 -0.02 -0.01 0.00
NOV 1988 0.00 -0.10 -0.09 0.04 -0.04 -0.01 0.00 0.00 0.00 0.00 0.00
DEC 1988 -0.05 -0.01 0.00 0.00 0.00 0.03 0.00 0.00 0.00 0.00 0.00
JAN 1989 -0.03 -0.01 0.00 0.01 0.00 0.01 0.00 0.00 0.00 0.00 0.00
FEB 1989 -0.11 -0.06 -0.02 0.03 0.00 0.00 0.00 0.00 0.00 0.00 0.00
MAR 1989 -0.14 -0.13 -0.09 0.28 -0.03 0.04 0.00 0.00 0.00 0.00 0.00
APR 1989 -0.02 0.15 -0.09 0.25 -0.07 -0.09 -0.04 -0.06 -0.04 -0.02 -0.01
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Table 55. NHA2,j, 1 continued

__ _ 12 1 13 14 1 15 1 16 [ 17 [18 [19 [20 ] 21 1 22
MAY 1989 -0.02 -0.07 -0.08 0.39 0.06 0.10 -0.02 -0.04 -0.07 -0.06 -0.05
JUN 1989 -0.08 0.28 -0.07 0.09 0.04 -0.08 -0.09 -0.01 -0.08 -0.07 -0.05
JUL 1989 -0.08 0.06 -0.10 0.42 -0.08 -0.09 0.05 0.00 -0.06 -0.04 -0.02
AUG 1989 0.07 0.10 -0.11 0.18 0.07 -0.06 -0.08 -0.06 -0.04 0.02 0.00
SEP 1989 0.04 0.07 -0.10 -0.05 -0.06 -0.07 -0.05 0.02 0.01 -0.06 0.00
OCT 1989 0.13 -0.03 -0.10 -0.09 -0.04 0.05 -0.05 -0.03 -0.02 -0.01 0.00
NOV 1989 -0.12 -0.11 -0.08 0.00 -0.01 0.00 0.00 0.00 0.00 0.00 0.00
DEC 1989 -0.07 -0.02 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
JAN 1990 -0.07 -0.03 -0.01 0.00 0.00 0.00 0.90 0.05 0.00 0.00 0.00
FEB 1990 -0.11 -0.06 -0.03 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
MAR 1990 -0.14 -0.06 -0.09 -0.06 -0.01 0.11 0.00 0.06 0.00 0.00 0.00
APR 1990 -0.08 -0.09 -0.09 -0.09 -0.09 0.03 -0.01 0.04 -0.04 -0.02 0.00
MAY 1990 -0.04 0.01 -0.06 0.01 -0.08 -0.05 0.26 0.03 -0.07 -0.06 -0.05
JUN 1990 -0.09 -0.08 -0.10 0.02 -0.10 -0.05 0.38 -0.01 -0.07 -0.05 -0.03
JUL 1990 -0.04 -0.04 -0.06 -0.04 -0.07 0.04 0.00 0.14 -0.05 -0.02 -0.01
AUG 1990 -0.11 -0.11 -0.11 -0.11 -0.10 -0.10 -0.08 0.16 -0.02 0.00 0.00
SEP 1990 -0.10 -0.11 -0.11 -0.10 -0.09 -0.07 -0.05 0.21 0.00 0.00 0.00
OCT 1990 -0.11 -0.10 -0.10 -0.09 -0.08 -0.06 -0.05 -0.01 -0.01 0.00 0.00
NOV 1990 -0.11 -0.11 -0.09 -0.07 -0.04 -0.02 -0.01 0.02 0.00 0.00 0.00
DEC 1990 -0.06 -0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
JAN 1991 -0.06 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
FEB 1991 -0.10 -0.01 -0.02 0.00 0.00 0.00 0.07 0.00 0.00 0.00 0.00
MAR 1991 -0.13 -0.12 -0.08 0.11 -0.01 -0.10 0.00 0.10 0.00 0.00 0.00
APR 1991 -0.10 -0.10 -0.10 -0.10 -0.09 -0.09 -0.07 0.24 -0.03 -0.01 0.00
MAY 1991 -0.09 -0.09 -0.09 -0.09 -0.09 -0.08 -0.08 0.19 -0.06 -0.05 -0.04
JUN 1991 -0.10 -0.10 -0.09 -0.05 -0.10 -0.09 -0.09 0.06 -0.07 -0.04 -0.02
JUL 1991 -0.11 -0.05 -0.11 0.02 -0.09 -0.10 -0.08 0.04 -0.03 -0.01 0.00
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Appendix G. Autocorrelations of NHA2,j,,

This appendix contains the autocorrelations of NHA2 j,1 for all twenty-two geographical

regions. The autocorrelations were calculated for the first twenty lags. Each column represents a

geographical region and each row represents a lag. Any autocorrelation that is greater than 0.33

or less than -0.33 is significantly different from zero.

Table 56. Autocorrelations of NHA 2,,, 1

1__ 1 12131 4 15 161 7 819 1101111
LAG 1 0.28 0.09 -0.06 -0.07 -0.02 0.24 0.49 0.25 0.15 0.13 0.56
LAG 2 -0.01 0.00 0.02 -0.07 -0.09 0.01 0.37 0.09 0.02 0.07 0.32
LAG 3 0.00 0.02 -0.06 0.36 -0.04 0.02 0.16 0.06 -0.18 -0.09 0.06
LAG 4 -0.04 0.00 -0.06 -0.07 -0.07 0.10 0.03 -0.11 -0.20 0.03 -0.04
LAG 5 -0.05 0.00 -0.06 0.16 -0.06 -0.03 -0.02 -0.27 0.06 -0.04 -0.05
LAG 6 -0.05 0.00 -0.06 -0.05 -0.06 -0.03 0.04 -0.18 -0.12 0.07 -0.07
LAG 7 -0.05 0.00 -0.06 -0.05 -0.06 0.03 -0.04 -0.11 0.14 -0.05 0.02
LAG 8 -0.03 0.01 0.09 0.19 -0.05 0.21 0.01 -0.22 -0.18 -0.14 0.16
LAG 9 0.00 0.03 -0.06 -0.04 -0.07 -0.03 0.03 -0.01 -0.16 -0.23 0.21

LAG 10 -0.01 0.00 0.11 -0.04 -0.10 -0.20 0.24 0.12 -0.06 -0.18 0.20
LAG 11 0.23 0.03 -0.04 -0.06 0.10 -0.02 0.26 0.24 0.11 -0.07 0.14
LAG 12 0.53 0.04 -0.04 -0.02 0.10 0.04 0.35 0.32 0.21 0.08 0.11
LAG 13 0.12 -0.05 -0.04 -0.04 -0.07 -0.08 0.15 0.20 0.07 0.04 0.05
LAG 14 -0.01 -0.01 -0.04 0.12 0.27 -0.15 0.11 0.09 -0.11 -0.02 -0.04
LAG 15 -0.01 0.12 -0.04 0.03 -0.05 -0.11 -0.08 -0.04 -0.20 0.04 -0.13
LAG 16 -0.03 0.00 -0.04 -0.04 -0.05 -0.05 -0.04 -0.07 -0.04 0.04 -0.11
LAG 17 -0.04 0.00 -0.04 0.10 -0.05 -0.06 -0.05 -0.18 0.00 0.16 -0.13
LAG 18 -0.04 0.00 -0.04 0.02 -0.04 -0.11 0.04 -0.12 0.16 0.15 -0.10
LAG 19 -0.04 0.00 -0.04 -0.03 -0.04 -0.04 -0.01 -0.24 -0.03 0.01 -0.08
LAG 20 -0.04 0.02 -0.04 -0.03 -0.02 -0.04 0.11 -0.18 -0.12 -0.08 -0.06
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Table 57. Autocorrelations of NHA 2j, 1 continued

_ 12 I 13 I 14 I 15 1 16 t 17 I 18 1 19 1 20 1 21 22
LAG 1 0.20 0.12 0.02 0.55 0.34 0.25 0.45 0.61 0.74 0.48 0.52
LAG 2 0.10 0.15 -0.01 0.43 0.20 0.15 -0.02 0.34 0.35 0.15 0.07
LAG 3 -0.11 -0.01 0.08 0.23 0.15 0.02 -0.12 0.10 0.05 0.04 -0.08
LAG 4 0.05 -0.01 -0.02 0.18 -0.04 -0.09 -0.11 0.15 -0.09 0.03 -0.11
LAG 5 -0.17 -0.17 0.01 0.02 -0.10 -0.08 -0.08 0.05 -0.17 0.07 -0.11
LAG 6 -0.29 -0.14 0.02 -0.05 -0.04- -0.24 -0.01 0.16 -0.15 -0.13 -0.11
LAG 7 -0.22 -0.27 0.01 -0.11 0.14 -0.19 -0.03 0.27 -0.16 -0.06 -0.11
LAG 8 -0.17 -0.01 -0.01 -0.07 -0.06 -0.24 0.02 0.41 -0.11 0.02 -0.11
LAG 9 -0.08 -0.04 0.06 -0.06 0.09 0.14 -0.03 0.28 0.03 -0.02 -0.11

LAG 10 0.05 0.04 -0.05 -0.07 0.06 0.09 -0.08 0.21 0.30 0.09 0.05
LAG 11 0.22 0.10 0.06 -0.03 0.02 0.13 -0.06 0.05 0.58 0.44 0.46
LAG 12 0.16 0.18 -0.01 -0.08 0.06 0.09 -0.20 0.12 0.73 0.59 0.71
LAG 13 0.10 0.03 -0.03 -0.01 0.02 0.14 -0.17 0.07 0.55 0.36 0.32
LAG 14 0.22 0.08 0.08 -0.06 0.03 0.25 -0.06 0.09 0.25 -0.01 -0.01
LAG 15 0.23 -0.09 0.02 -0.17 0.01 -0.08 0.04 0.01 -0.03 0.00 -0.08
LAG 16 -0.02 0.05 0.00 -0.16 -0.08 -0.04 0.04 -0.01 -0.12 -0.06 -0.09
LAG 17 -0.13 -0.11 0.07 -0.09 -0.12 -0.26 0.00 -0.07 -0.15 -0.13 -0.09
LAG 18 -0.09 -0.10 -0.01 -0.05 -0.14 -0.14 -0.02 -0.04 -0.15 -0.12 -0.09
LAG 19 -0.08 0.11 0.01 0.02 -0.12 -0,11 -0.02 -0.05 -0.14 -0.07 -0.09
LAG 20 -0.16 0.03 -0.02 -0.03 -0.01 -0.13 -0.07 -0.07 -0.12 0.01 -0.10
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Appendix H. NHAS Database for Event Type 2 and Time Block 1

This appendix contains monthly observations of NHAS 2 ,j,I for all twenty-two geographical

regions. Each column represents a geographical region and each row represents a period.

Table 58. NHAS 2 j,1

_ _ 1 1 2 3 1 4 5 [6 71 8 9 110 111
PERIOD 1 0.00 0.00 0.00 0.00 -0.51 -0.26 -0.10 0.02 0.13 0.03 0.27
PERIOD 2 0.00 0.00 0.00 -0.02 0.00 -0.99 0.01 -0.09 0.05 0.03 0.00
PERIOD 3 0.00 0.00 0.00 0.00 1.00 -0.18 -0.34 -0.35 -0.01 0.03 0.01
PERIOD 4 0.00 0.00 0.00 -0.50 0.00 0.00 -0.01 -0.01 -0.51 -0.01 -0.01
PERIOD 5 0.00 0.00 0.00 0.00 0.00 0.00 0.50 0.17 0.00 -0.67 -0.01
PERIOD 6 0.00 0.00 0.00 0.00 0.00 0.00 0.00 -0.60 -0.41 0.11 0.00
PERIOD 7 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 -0.01 -0.01
PERIOD 8 0.00 0.00 0.00 0.00 0.00 0.00 0.00 -0.01 -0.01 -0.01 -0.01
PERIOD 9 0.00 0.00 0.00 -0.89 0.00 -0.01 -0.02 -0.01 -0.01 -0.01 0.02
PERIOD 10 0.00 0.00 -0.21 0.00 0.00 -0.21 -0.17 -0.12 -0.15 -0.05 0.00
PERIOD 11 0.00 0.00 0.00 0.00 0.00 -0.04 -0.02 0.07 -0.68 0.01 -0.33
PERIOD 12 -0.05 -0.01 0.00 -1.00 0.00 0.19 -0.10 -0.03 0.00 0.00 0.00
PERIOD 13 0.00 0.00 0.00 0.00 0.01 0.01 0.04 -0.01 -0.23 -0.03 -0.40
PERIOD 14 0.00 0.00 0.00 0.30 0.17 0.38 0.05 0.15 -0.05 -0.03 0.00
PERIOD 15 0.00 0.00 0.00 0.10 -0.73 0.15 0.31 0.19 0.02 0.02 -0.01
PERIOD 16 0.00 0.00 0.00 0.00 0.00 0.00 0.06 0.30 0.06 0.03 0.02
PERIOD 17 0.00 0.00 0.00 0.00 0.00 0.00 -0.49 -0.16 0.68 0.23 0.01
PERIOD 18 0.00 0.00 0.00 0.00 0.00 0.29 0.00 0.01 0.01 0.47 0.02
PERIOD 19 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.02 0.02 0.02 0.03
PERIOD 20 0.00 0.00 0.00 0.00 0.00 0.02 0.08 0.07 0.42 0.09 0.07
PERIOD 21 0.00 0.00 0.00 0.03 0.00 0.07 0.48 0.16 0.12 0.11 0.10
PERIOD 22 0.00 0.00 0.00 0.00 0.00 0.16 0.04 0.07 0.13 0.09 0.31
PERIOD 23 0.02 0.01 0.00 0.01 0.06 0.14 0.38 0.24 0.03 -0.06 -0.05
PERIOD 24 0.19 0.08 0.00 0.00 -0.02 0.18 0.34 -0.14 0.03 -0.08 0.15
PERIOD 25 0.03 0.02 0.00 0.05 0.19 0.13 0.41 0.08 0.01 -0.09 0.03
PERIOD 26 0.00 0.00 0.00 -0.28 -0.16 0.16 0.53 0.03 0.01 -0.08 -0.10
PERIOD 27 0.01 0.00 0.08 -0.10 -0.26 -0.05 0.37 -0.13 0.23 -0.01 -0.04
PERIOD 28 0.00 0.00 0.00 0.08 0.00 0.23 0.04 -0.13 -0.03 0.02 0.10
PERIOD 29 0.00 0.00 0.08 0.00 0.00 0.08 0.68 0.01 -0.47 -0.22 -0.01
PERIOD 30 0.00 0.00 0.00 0.00 0.00 -0.29 0.00 0.01 0.03 -0.55 0.52
PERIOD 31 0.00 0.00 0.00 0.00 0.00 0.00 0.05 0.02 0.07 0.10 0.62
PERIOD 32 0.00 0.00 0.00 0.00 0.00 -0.02 0.01 -0.01 -0.26 -0.02 0.11
PERIOD 33 0.00 0.00 0.00 -0.03 0.02 0.02 -0.22 0.05 0.11 0.26 0.09
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Table 59. NHAS2,j, continued

1 1 2 1 [3 1 [ 5 [ 6 [ 7 8 9 10 1 111
PERIOD 34 0.00 0.00 0.00 0.00 0.00 -0.15 0.05 0.05 0.42 0.36 -0.23
PERIOD 35 0.01 0.00 0.00 0.00 -0.05 0.10 -0.06 -0.02 0.29 0.16 -0.03
PERIOD 36 0.02 -0.03 0.00 0.15 0.16 0.11 -0.05 0.06 0.04 -0.05 -0.12
PERIOD 37 0.00 -0.02 0.15 0.00 0.22 0.08 -0.07 0.09 -0.10 -0.07 -0.13
PERIOD 38 0.00 0.00 0.00 0.02 0.03 -0.47 -0.28 0.43 0.01 0.03 0.31
PERIOD 39 0.00 0.00 -0.08 0.00 0.16 -0.02 -0.24 0.05 -0.09 0.02 0.01
PERIOD 40 0.00 0.00 0.00 -0.08 0.00 -0.23 0.04 -0.11 0.19 0.03 -0.04
PERIOD 41 0.00 0.00 -0.08 0.00 0.00 -0.07 -0.67 0.01 -0.15 0.02 0.03
PERIOD 42 0.00 0.00 0.00 0.00 0.02 0.00 0.02 0.10 0.05 0.01 -0.46
PERIOD 43 0.00 0.00 0.00 0.00 0.01 0.00 -0.02 0.02 0.00 -0.05 -0.55
PERIOD 44 0.00 0.00 0.00 0.00 0.00 0.00 -0.06 -0.01 -0.05 0.03 -0.02
PERIOD 45 0.00 0.02 0.00 0.00 0.00 -0.06 -0.01 -0.07 0.17 -0.22 -0.12
PERIOD 46 0.00 0.00 0.00 0.00 0.00 0.00 0.16 -0.01 -0.44 -0.09 0.00
PERIOD 47 0.00 0.00 0.00 0.00 0.03 -0.09 0.43 -0.04 -0.01 -0.15 -0.04
PERIOD 48 0.00 0.00 0.00 -0.15 -0.15 -0.12 0.21 -0.01 -0.31 0.74 -0.16
PERIOD 49 0.03 0.00 -0.15 -0.02 -0.35 -0.09 0.59 0.12 -0.06 0.00 -0.04
PERIOD 50 0.00 0.00 0.00 -0.02 0.13 0.00 0.21 -0.19 0.00 0.24 -0.33
PERIOD 51 0.00 0.00 0.00 0.00 -0.15 -0.03 -0.29 0.14 0.15 0.29 0.02
PERIOD 52 0.00 0.00 0.00 0.00 0.00 0.00 -0.09 -0.01 0.14 0.40 -0.02
PERIOD 53 0.00 0.00 0.00 0.00 0.00 -0.01 0.00 0.00 0.04 0.00 0.22
PERIOD 54 0.00 0.00 0.00 0.00 -0.02 0.01 -0.02 -0.09 -0.03 0.01 0.21
PERIOD 55 0.00 0.00 0.00 0.00 -0.01 0.02 -0.02 -0.02 0.01 -0.02 0.24
PERIOD 56 0.00 0.00 0.00 0.00 0.00 0.08 0.05 0.00 0.10 -0.01 0.45
PERIOD 57 0.02 -0.02 0.00 0.00 -0.02 0.00 -0.16 -0.03 -0.26 -0.06 0.71
PERIOD 58 0.00 0.00 0.00 0.00 0.05 0.12 -0.06 0.02 0.09 -0.26 0.50
PERIOD 59 0.00 0.00 0.00 0.00 -0.03 -0.03 0.31 0.11 -0.23 0.00 -0.01
PERIOD 60 0.00 0.10 0.10 0.00 0.00 0.00 0.49 -0.01 -0.01 -0.70 0.01
PERIOD 61 -0.03 0.00 0.00 0.00 0.08 -0.06 0.21 -0.24 0.05 -0.01 0.02
PERIOD 62 0.00 0.00 0.00 0.00 -0.11 0.00 0.04 -0.19 -0.01 -0.24 0.38
PERIOD 63 0.00 0.00 0.00 0.00 0.00 0.00 0.17 -0.12 0.04 -0.15 0.07
PERIOD 64 0.00 0.00 0.00 0.00 0.00 0.00 0.05 -0.01 -0.02 -0.41 0.38
PERIOD 65 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.05 0.04 0.34
PERIOD 66 0.00 0.00 0.00 0.00 0.00 -0.01 0.00 0.00 0.02 0.10 0.42
PERIOD 67 0.00 0.00 0.00 0.00 0.00 -0.02 0.00 0.00 0.01 0.02 0.37
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Table 60. NHAS2 j,1 continued

12 113 114 15 16 1 17 18 19 20 21 322
PERIOD 1 0.40 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
PERIOD 2 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
PERIOD 3 0.01 0.01 0.00 -0.17 0.00 0.00 0.00 0.00 0.00 0.00 0.00
PERIOD 4 0.00 0.00 0.01 0.01 0.01 0.00 0.00 0.00 0.00 0.00 0.00
PERIOD 5 0.00 -0.34 0.00 0.00 0.34 0.01 0.01 0.01 0.00 0.00 0.00
PERIOD 6 -0.01 -0.02 0.78 0.01 0.12 0.01 0.01 0.01 0.00 0.00 0.00
PERIOD 7 -0.02 0.00 0.01 0.01 0.01 0.01 0.00 0.00 0.00 0.00 0.00
PERIOD 8 0.00 0.00 0.01 0.01 0.01 0.00 0.00 0.00 0.00 0.00 0.00
PERIOD 9 0.01 -0.10 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
PERIOD 10 0.00 -0.07 0.01 0.01 0.00 -0.04 0.00 0.00 0.00 0.00 0.00
PERIOD 11 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
PERIOD 12 0.25 0.50 0.00 0.00 0.25 0.00 0.00 0.00 0.00 0.00 0.00
PERIOD 13 -0.40 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
PERIOD 14 0.00 0.06 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
PERIOD 15 -0.03 -0.02 -0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
PERIOD 16 0.59 -0.02 -0.01 0.01 -0.03 -0.02 -0.01 0.00 0.00 0.00 0.00
PERIOD 17 0.01 0.07 0.06 0.00 -0.34 -0.02 -0.02 -0.02 -0.01 0.00 0.00
PERIOD 1 0.03 0.17 -0.78 0.00 -0.13 -0.03 -0.03 -0.02 -0.01 0.00 0.00
PERIOD 19 0.04 0.00 0.00 -0.03 -0.04 -0.04 -0.02 -0.01 0.00 0.00 0.00
PERIOD 20 0.09 0.13 0.10 -0.03 -0.05 0.00 0.04 0.00 0.00 0.00 0.00
PERIOD 21 0.01 -0.02 -0.05 -0.03 -0.01 0.03 0.00 0.00 0.00 0.00 0.00
PERIOD 22 0.02 0.03 -0.01 0.12 -0.02 0.00 0.03 0.00 0.00 0.00 0.00
PERIOD 23 -0.02 0.05 0.03 0.00 0.00 0.08 0.02 0.08 0.00 0.00 0.00
PERIOD 24 -0.22 -0.36 0.03 0.00 -0.22 0.00 0.00 0.00 0.00 0.00 0.00
PERIOD 25 0.05 0.00 0.05 0.00 0.02 0.00 0.00 0.00 0.00 0.00 0.00
PERIOD 26 -0.06 -0.08 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
PERIOD 27 -0.03 -0.04 -0.03 -0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00
PERIOD 28 -0.47 0.34 -0.01 -0.06 -0.03 -0.04 -0.02 -0.01 0.00 0.00 0.00
PERIOD 29 0.03 -0.03 -0.04 0.01 0.00 -0.02 -0.03 -0.03 -0.03 -0.02 -0.01
PERIOD 30 0.38 -0.09 0.03 0.18 0.00 -0.02 -0.03 -0.05 -0.05 -0.04 -0.03
PERIOD 31 0.09 0.17 0.06 0.00 -0.02 -0.05 -0.05 -0.04 -0.02 0.00 0.00
PERIOD 32 -0.05 0.11 -0.09 0.06 0.07 0.07 0.00 0.00 0.00 0.00 0.00
PERIOD 33 0.02 -0.03 -0.05 -0.08 -0.07 -0.08 -0.02 0.00 0.00 0.00 0.00
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Table 61. NHASj,l continued

112113114115116117118119120121 ]22]
PERIOD 34 0.06 -0.05 -0.04 -0.20 -0.05 -0.06 -0,07 -0.04 -0.02 -0.01 0.00
PERIOD 35 0.03 -0.15 -0.12 0.04 -0.04 -0.09 -0.02 -0.08 0.00 0.00 0.00
PERIOD 36 -0.08 -0.15 -0.03 0.00 -0.03 0.03 0.00 0.00 0.00 0.00 0.00
PERIOD 37 -0.08 -0.01 -0.05 0.01 -0.02 0.01 0.00 0.00 0.00 0.00 0.00
PERIOD 38 -0.04 -0.04 -0.02 0.03 0.00 0.00 0.00 0.00 0.00 0.00 0.00
PERIOD 39 -0.02 -0.05 -0.05 0.29 -0.03 0.04 0.00 0.00 0.00 0.00 0.00
PERIOD 40 0.01 -0.05 0.02 0.35 0.01 -0.03 -0.01 -0.05 -0.04 -0.02 -0.01
PERIOD 41 0.08 0.03 0.02 0.48 0.15 0.19 0.05 0.02 -0.04 -0.04 -0.05
PERIOD 42 -0.31 0.30 0.03 0.02 0.13 0.01 -0.01 0.06 -0.02 -0.02 -0.02
PERIOD 43 -0.03 0.04 -0.04 0.53 0.02 0.01 0.12 0.05 -0.05 -0.04 -0.02
PERIOD 44 0.19 -0.01 -0.03 0.19 0.07 -0.12 -0.12 -0.06 -0.03 0.02 0.00
PERIOD 45 0.12 0.17 0.02 0.06 0.02 -0.02 -0.03 0.02 0.01 -0.06 0.00
PERIOD 46 0.17 0.08 -0.01 0.00 0.03 0.12 -0.01 0.00 0.00 0.00 0.00
PERIOD 47 -0.13 -0.02 0.01 -0.04 0.03 0.01 0.00 0.00 0.00 0.00 0.00
PERIOD 48 -0.02 -0.01 0.00 0.00 0.00 -0.03 0.00 0.00 0.00 0.00 0.00
PERIOD 49 -0.04 -0.01 -0.01 -0.01 0.00 -0.01 0.00 0.05 0.00 0.00 0.00
PERIOD 50 0.00 0.00 -0.01 -0.03 0.00 0.00 0.00 0.00 0.00 0.00 0.00
PERIOD 51 0.00 0.07 0.00 -0.34 0.02 0.07 0.00 0.06 0.00 0.00 0.00
PERIOD 52 -0.06 -0.24 0.00 -0.34 -0.02 0.12 0.03 0.10 0.00 0.00 0.00
PERIOD 53 -0.02 0.08 0.02 -0.38 -0.14 -0.15 0.28 0.07 0.01 0.00 0.01
PERIOD 54 -0.01 -0.35 -0.02 -0.06 -0.13 0.03 0.47 0.00 0.01 0.01 0.02
PERIOD 55 0.04 -0.11 0.03 -0.47 0.01 0.13 -0.04 0.14 0.01 0.02 0.01
PERIOD 56 -0.18 -0.22 -0.01 -0.28 -0.17 -0.03 0.01 0.22 0.02 -0.02 0.00
PERIOD 57 -0.14 -0.18 -0.01 -0.06 -0.04 0.00 0.01 0.19 -0.01 0.06 0.00
PERIOD 58 -0.24 -0.07 0.00 0.00 -0.04 -0.12 0.01 0.03 0.00 0.00 0.00
PERIOD 59 0.01 0.01 -0.01 -0.07 -0.04 -0.02 -0.01 0.02 0.00 0.00 0.00
PERIOD 60 0.01 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
PERIOD 61 0.01 0.03 0.01 0.00 0.00 0.00 0.00 -0.05 0.00 0.00 0.00
PERIOD 62 0.00 0.05 0.01 0.00 0.00 0.00 0.07 0.00 0.00 0.00 0.00
PERIOD 63 0.01 -0.06 0.02 0.17 0.00 -0.20 0.00 0.04 0.00 0.00 0.00
PERIOD 64 -0.01 0.00 0.00 0.00 0.00 -0.12 -0.06 0.20 0.01 0.01 0.00
PERIOD 65 -0.04 -0.09 -0.02 -0.09 0.00 -0.03 -0.34 0.16 0.00 0.01 0.01
PERIOD 66 -0.01 -0.02 0.01 -0.07 0.00 -0.04 -0.47 0.07 0.00 0.01 0.01
PERIOD 67 -0.07 -0.01 -0.05 0.07 -0.01 -0.14 -0.09 -0.10 0.02 0,02 0.01

156



Appendix I. Autocorrelations of NHAS for Event Type 1 and Time Block 1

This appendix contains the autocorrelations of NHASijk for event type 2 and time block 1.

The autocorrelations were caluclated for the first 17 lags for all twenty-two geographical regions.

Each column represents a geographical region and each row represents a lag. Any autocorrelation

that is greater than 0.24 or less than -0.24 is significantly different from zero.

Table 62. Autocorrelations of NHAS2 j,I

1 1 2 1 3 4 1 5 1 6 1 7 1 8 9 1 10 1 11
LAG 1 0.21 0.14 0.00 -0.02 -0.05 0.29 0.31 0.04 0.08 0.16 0.50
LAG 2 0.00 -0.01 0.01 -0.18 -0.22 0.11 0.22 -0.01 0.15 0.23 0.35
LAG 3 0.02 -0.13 0.00 0.32 0.03 0.07 0.23 0.12 0.08 0.02 0.15
LAG 4 -0.03 -0.02 -0.10 -0.04 -0.01 0.10 -0.01 0.13 -0.04 0.13 0.01
LAG 5 -0.02 -0.02 0.00 0.04 0.01 -0.02 0.05 -0.01 0.04 -0.09 0.06
LAG 6 -0.02 -0.02 0.00 -0.07 0.00 0.05 -0.02 -0.03 -0.24 -0.05 0.08
LAG 7 -0.03 -0.02 0.00 -0.02 -0.01 0.09 -0.12 0.14 0.14 -0.07 0.15
LAG 8 -0.01 -0.03 0.19 0.20 0.00 0.21 -0.15 -0.07 -0.05 -0.17 0.24
LAG 9 -0.02 -0.04 0.00 -0.04 -0.03 0.07 -0.24 -0.08 -0.09 -0.13 0.19
LAG 10 -0.02 -0.01 0.14 -0.10 -0.13 0.00 -0.07 -0.13 -0.04 -0.18 0.05
LAG 11 0.01 -0.05 -0.12 -0.05 0.14 0.03 -0.03 -0.06 -0.10 -0.10 -0.09
LAG 12 -0.19 -0.23 -0.28 -0.08 -0.33 -0.28 -0.36 -0.17 -0.23 -0.39 [0.31
LAG 13 -0.04 -0.13 0.00 -0.04 -0.07 -0.13 -0.03 -0.08 -0.11 -0.07 -0.17
LAG 14 -0.03 -0.02 -0.05 0.13 0.19 -0.02 -0.07 -0.04 -0.03 0.02 -0.23
LAG 15 -0.05 0.09 0.00 0.03 -0.02 -0.08 -0.20 -0.04 -0.05 0.17 -0.25
LAG 16 -0.03 -0.01 0.00 -0.07 0.00 -0.28 -0.05 0.01 -0.01 0.04 -0.08
LAG 17 -0.03 -0.01 -0.14 0.09 0.00 -0.06 -0.18 -0.05 -0.11 0.23 -0.18
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Table 63. Autocorrelations of NHAS 2 jI continued

[ 12 1 13 14 [ 15 [ 16 [ 17 [ 18 [ 19 [ 20 1 21 22

LAG 1 -0.01 0.08 -0.02 0.53 0.31 0.07 0.48 0.55 0.54 0.00 0.52
LAG 2 -0.09 0.11 -0.04 0.49 0.15 -0.06 0.10 0.16 0.23 0.34 0.25
LAG 3 -0.23 0.09 0.06 0.36 0.14 -0.01 -0.02 -0.01 0.23 0.12 0.02
LAG 4 0.18 -0.06 0.01 0.32 0.07 0.12 -0.03 0.11 0.06 0.14 -0.02
LAG 5 0.05 0.04 -0.01 0.12 -0.12 0.31 0.00 0.07 -0.07 0.07 -0.02
LAG 6 -0.09 -0.03 -0.01 -0.01 0.04 -0.03 0.00 0.13 -0.02 -0.01 -0.02
LAG 7 -0.09 -0.34 -0.03 -0.14 0.24 -0.17 -0.01 0.21 -0.03 0.05 -0.02
LAG 8 -0.11 -0.02 -0.01 -0.18 -0.11 -0.20 0.01 0.28 -0.03 0.02 -0.02
LAG 9 0.05 -0.04 -0.01 -0.17 -0.03 0.24 -0.05 0.28 0.05 0.01 -0.02

LAG 10 0.04 -0.04 -0.01 -0.27 -0.05 0.11 -0.05 0.10 0.13 0.04 0.02
LAG 11 0.15 0.12 0.06 -0.26 -0.14 -0.04 -0.14 -0.04 0.20 0.22 0.23
LAG 12 -0.46 -0.30 -0.51 -0.49 -0.47 -0.42 -0.45 -0.02 0.10 -0.22 0.05
LAG 13 -0.01 -0.07 -0.04 -0.19 -0.15 -0.04 -0.23 0.14 0.14 0.20 -0.06
LAG 14 0.30 0.11 0.11 -0.21 -0.09 0.24 -0.06 0.12 0.10 -0.23 -0.11
LAG 15 0.40 -0.07 -0.01 -0.22 -0.11 -0.04 0.01 0.04 -0.16 0.05 -0.05
LAG 16 -0.07 0.11 0.02 -0.21 0.00 0.01 0.01 -0.04 -0.15 -0.08 -0.03
LAG 17 -0.18 0.05 0.09 -0.02 -0.03 -0.26 0.00 -0.07 I -0.06 -0.11 -0.03
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Appendix J. Autocorrelations for Each of the Twenty-Two Geographical Regions

This appendix contains twenty-two two-dimensional plots of the autocorrelations of NHAS 2 ,j,1

for each of the twenty-two geographical regions. The autocorrelatoins were calculated for the first

seventeen lags. Any autocorrelation that is gretaer than 0.24 or less than -0.24 is significantly

different from zero.
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Figure 51. Autocorrelations for Region I NHAS 2 ,1,1
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Figure 52. Autocorrelations for Region 2 NHAS 2,2 ,1
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Figure 53. Autocorrelations for Region 3 NHAS 2 ,3,1
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Figure 54. Autocorrelations for Region 4 NHAS 2 ,4,1
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Figure 55. Autocorrelations for Region 5 NHAS 2,5,1
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Figure 56. Autocorrelations for Region 6 NHAS 2,6 ,1
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Figure 57. Autocorrelations for Region 7 NHAS 2 ,7,1
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Figure 58. Autocorrelations for Region 8 NHAS 2 ,S,1
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Figure 59. Autocorrelations for Region 9 NHAS 2 ,9,1
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Figure 60. Autocorrelations for Region 10 NHAS 2,10,1
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Figure 61. Autocorrelations for Region 11 NHAS._,1 , 1,
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Figure 62. Autocorrelations for Region 12 NHAS 2,12 ,1
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Figure 63. Autocorrelations for Region 13 NHAS 2 ,13 ,1
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Figure 64. Autocorrelations for Region 14 NHAS 2 ,14 ,1
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Figure 65. Autocorrelations for Region 15 NHAS 2 ,1 5,1
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Figure 66. Autocorrelations for Region 16 NHAS 2,16 ,1
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Figure 67. Autocorrelations for Region 17 NHAS 2,17 ,1
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Figure 68. Autocorrelations for Region 18 NHAS 2 ,18,1
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Figure 69. Autocorrelations for Region 19 NHAS 2,19 ,1
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Figure 70. Autocorrelations for Region 20 NHAS 2,2 0,1
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Figure 71. Autocorrelations for Region 21 NHAS 2,2 1,1
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Figure 72. Autocorrelations for Region 22 NHAS 2,22,1
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Appendix K. Partial Autocorrelatoins of Target Region 11 NHAS for Event Type 2

and Time Block 1

This appendix contains the partial autocorrelations of NHASXijk for event type 2, geograph-

ical region 11, and time block 1. The partial autocorrelations were calculated for the first seventeen

lags. Any partial autocorrelation that is greater than 0.24 or less than -0.24 is significantly different

from zero. Each row represents a lag.

Table 64. Partial Autocorrelations of NHAS 2,1 1,1

I PAC
LAG 1 0.50
LAG 2 0.13
LAG 3 -0.08
LAG 4 -0.10
LAG 5 0.12
LAG 6 0.08
LAG 7 0.08
LAG 8 0.13
LAG 9 -0.01
LAG 10 -0.15
LAG 11 -0.13
LAG 12 -0.26
LAG 13 0.14
LAG 14 -0.13
LAG 15 -0.22
LAG 16 0.12
LAG 17 -0.15
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Appendix L. Combined Series With Target Region 11

This appendix contains the the NHAS 2,j 1 values for target region 11, tJ'e weighted sum of

the first order neighbors of target region 11, and the weighted sum of the second order neighbors

of target region 11. The combined series results if the rows are read across. Each row represents a

period.

Table 65. Combined Series for Target Region 11

I TARGET 11 1ST ORDER 2ND ORDER]
PERIOD 1 0.27 -0.04 -0.11
PERIOD 2 0.00 0.02 -0.10
PERIOD 3 0.01 -0.15 0.11
PERIOD 4 -0.01 -0.16 -0.05
PERIOD 5 -0.01 -0.07 -0.06
PERIOD 6 0.00 -0.10 0.10
PERIOD 7 -0.01 0.00 0.00
PERIOD 8 -0.01 0.00 0.00
PERIOD 9 0.02 -0.02 -0.16

PERIOD 10 0.00 -0.14 -0.07
PERIOD 11 -0.33 -0.13 0.00
PERIOD 12 0.00 -0.01 -0.08
PERIOD 13 -0.40 -0.01 -0.03
PERIOD 14 0.00 0.01 0.11
PERIOD 15 -0.01 0.11 -0.08
PERIOD 16 0.02 0.04 0.12
PERIOD 17 0.01 0.16 0.00
PERIOD 18 0.02 0.05 -0.06
PERIOD 19 0.03 -0.01 0.00
PERIOD 20 0.07 0.20 0.05
PERIOD 21 0.10 0.26 0.07
PERIOD 22 0.31 0.08 0.06
PERIOD 23 -0.05 0.28 0.07
PERIOD 24 0.15 0.20 -0.01
PERIOD 25 0.03 0.28 0.08
PERIOD 26 -0.10 0.19 -0.06
PERIOD 27 -0.04 0.20 -0.08
PERIOD 28 0.10 0.03 -0.04
PERIOD 29 -0.01 -0.10 -0.04
PERIOD 30 0.52 0.03 -0.07
PERIOD 31 0.62 0.06 0.04
PERIOD 32 0.11 -0.07 -0.02
PERIOD 33 0.09 -0.07 0.08
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Table 66. Combined Series for Target Region 11 continued

[TARGET 11 1ST ORDER 2ND ORDER
PERIOD 34 -0.23 0.15 0.09
PERIOD 35 -0.03 -0.01 0.04
PERIOD 36 -0.12 -0.04 0.07
PERIOD 37 -0.13 -0.06 0.06
PERIOD 38 0.31 -0.10 0.03
PERIOD 39 0.01 -0.07 0.03
PERIOD 40 -0.04 0.12 -0.04
PERIOD 41 0.03 0.11 0.04
PERIOD 42 -0.46 0.14 -0.01
PERIOD 43 -0.55 0.19 0.00
PERIOD 44 -0.02 -0.04 0.03
PERIOD 45 -0.12 0.07 -0.06
PERIOD 46 0.00 -0.07 0.00
PERIOD 47 -0.04 0.29 -0.05
PERIOD 48 -0.16 0.09 0.01
PERIOD 49 -0.04 0.39 -0.07
PERIOD 50 -0.33 0.07 0.04
PERIOD 51 0.02 -0.10 0.06
PERIOD 52 -0.02 -0.06 0.08
PERIOD 53 0.22 -0.09 0.03
PERIOD 54 0.21 -0.13 0.04
PERIOD 55 0.24 -0.15 0.00
PERIOD 56 u.45 0.04 -0.02
PERIOD 57 0.71 -0.18 -0.04
PERIOD 58 0.50 0.00 -0.09
PERIOD 59 -0.01 0.17 0.00
PERIOD 60 0.01 0.34 -0.08
PERIOD 61 0.02 0.16 -0.03
PERIOD 62 0.38 0.02 -0.10
PERIOD 63 0.07 0.09 -0.05
PERIOD 64 0.38 0.02 -0.10
PERIOD 65 G.34 -0.02 -0.05
PERIOD 66 0.42 -0.02 -0.05
PERIOD 67 0.37 -0.01 -0.03
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Appendix M. Autocorrelations and Partial Autocorrelations of the Combined

Series with Target Region 11

This appendix contains the autocorrelations and the partial autocorrelations of the combined

series with target region 11 for event type 2 and time block 1. The autocorrelations and the

partial autocorrelations were calculated for the first forty-four lags. Any autocorrelations or partial

autocorrelation that is greater than 0.14 or less than -0.14 is significantly different from zero. Each

row represents a lag.

Table 67. Autocorrelations and Partial Autocorrelations for the Combined Series with Target,
Region 11

_ AC [PAC]
LAG 1 -0.13 -0.13
LAG 2 -0.11 -0.13
LAG 3 0.49 0.47
LAG 4 -0.04 0.07
LAG 5 -0.08 0.00
LAG 6 0.35 0.16
LAG 7 -0.01 0.04
LAG 8 -0.05 0.03
LAG 9 0.17 -0.06

LAG 10 0.06 0.07
LAG 11 0.07 0.16
LAG 12 0.04 -0.04
LAG 13 0.01 -0.07
LAG 14 0.07 -0.03
LAG 15 0.04 0.05
LAG 16 0.00 0.00
LAG 17 0.10 0.02
LAG 18 0.06 0.09
LAG 19 -0 07 -0.04
LAG 20 0.11 0.03
LAG 21 0.12 0.06
LAG 22 -0.06 0.02
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Table 68. Autocorrelations and Partial Autocorrelations for the Combined Series with Target
Region 11 continued

I JACI PACI

LAG 23 0.07 0.01
LAG 24 0.16 0.07
LAG 25 -0.07 0.00
LAG 26 0.01 -0.06
LAG 27 0.13 -0.04
LAG 28 -0.01 0.04
LAG 29 0.01 0.05

LAG 30 0.01 -0.12
LAG 31 -0.03 -0.16
LAG 32 -0.04 -0.10
LAG 33 -0.07 -0.11
LAG 34 -0.01 -0.06
LAG 35 -0.05 -0.09

LAG 36 -0.27 -0.27
LAG 37 -0.01 -0.10
LAG 38 0.01 -0.02
LAG 39 -0.14 0.11
LAG 40 -0.05 -0.03
LAG 41 0.05 0.06
LAG 42 -0.19 -0.06
LAG 43 -0.03 0.04
LAG 44 0.0 0.01
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Appendix N. Residuals from Fitting the SSTMA(2 1,1)12 Model

This appendix contains the residuals from fitting the SSTMA(2, 1)12 model to the combined

series with target region 11 for all 201 periods.

Table 69. Combined Series with Target Region 11 Residuals

PERIOD RESID PERIOD RESID PERIOD I RESID PERIOD ] RESID]

PERIOD 1 0.18 PERIOD 26 -0.06 PERIOD 51 -0.04 PERIOD 76 -0.18

PERIOD 2 -0.02 PERIOD 27 -0.13 PERIOD 52 0.00 PERIOD 77 0.01
PERIOD 3 -0.08 PERIOD 28 -0.03 PERIOD 53 -0.04 PERIOD 78 -0.03
PERIOD 4 -0.08 PERIOD 29 -0.12 PERIOD 54 -0.03 PERIOD 79 0.02
PERIOD 5 0.04 PERIOD 30 -0.06 PERIOD 55 -0.02 PERIOD 80 0.10
PERIOD 6 -0.01 PERIOD 31 -0.22 PERIOD 56 -0.07 PERIOD 81 -0.10
PERIOD 7 -0.08 PERIOD 32 -0.18 PERIOD 57 -0.02 PERIOD 82 0.09

PERIOD 8 -0.16 PERIOD 33 0.07 PERIOD 58 0.03 PERIOD 83 -0.07
PERIOD 9 0.17 PERIOD 34 0.09 PERIOD 59 0.21 PERIOD 84 0.04
PERIOD 10 0.02 PERIOD 35 0.03 PERIOD 60 0.05 PERIOD 85 -0.12
PERIOD 11 -0.08 PERIOD 36 -0.06 PERIOD 61 0.09 PERIOD 86 -0.10
PERIOD 12 -0.11 PERIOD 37 -0.25 PERIOD 62 0.16 PERIOD 87 -0.09
PERIOD 13 -0.04 PERIOD 38 -0.06 PERIOD 63 -0.02 PERIOD 88 0.47
PERIOD 14 0.02 PERIOD 39 -0.07 PERIOD 64 0.24 PERIOD 89 0.11
PERIOD 15 -0.05 PERIOD 40 0.00 PERIOD 65 -0.12 PERIOD 90 -0.09
PERIOD 16 -0.08 PERIOD 41 -0.03 PERIOD 66 -0.16 PERIOD 91 0.40
PERIOD 17 -0.09 PERIOD 42 0.11 PERIOD 67 -0.34 PERIOD 92 0.12
PERIOD 18 0.14 PERIOD 43 0.05 PERIOD 68 0.10 PERIOD 93 0.10
PERIOD 19 0.01 PERIOD 44 0.05 PERIOD 69 0.09 PERIOD 94 -0.25
PERIOD 20 0.00 PERIOD 45 -0.03 PERIOD 70 0.17 PERIOD 95 -0.09
PERIOD 21 -0.06 PERIOD 46 -0.06 PERIOD 71 0.12 PERIOD 96 -0.05
PERIOD 22 0.01 PERIOD 47 -0.07 PERIOD 72 -0.05 PERIOD 97 0.07
PERIOD 23 0.01 PERIOD 48 0.05 PERIOD 73 -0.11 PERIOD 98 -0.01

PERIOD 24 -0.05 PERIOD 49 -0.04 PERIOD 74 0.12 PERIOD 99 -0.01
PERIOD 25 0.00 PERIOD 50 0.08 PERIOD 75 0.04 PERIOD 100 -0.03
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Table 70. Combined Series with Target Region 11 Residuals continued

PERIOD RESID PERIOD RESID PERIOD RESIDT PERIOD RESID
PERIOD 101 0.15 PERIOD 126 -0.09 PERIOD 151 0.06 PERIOD 176 0.28
PERIOD 102 0.09 PERIOD 127 -0.19 PERIOD 152 -0.19 PERIOD 177 0.06
PERIOD 103 -0.17 PERIOD 128 0.08 PERIOD 153 -0.05 PERIOD 178 -0.02
PERIOD 104 -0.05 PERIOD 129 0.02 PERIOD 154 -0.04 PERIOD 179 0.18
PERIOD 105 0.03 PERIOD 130 0.16 PERIOD 155 0.08 PERIOD 180 -0.04
PERIOD 106 0.02 PERIOD 131 -0.13 PERIOD 156 0.01 PERIOD 181 0.02
PERIOD 107 -0.05 PERIOD 132 -0.01 PERIOD 157 0.16 PERIOD 182 0.17
PERIOD 108 -0.05 PERIOD 133 -0.07 PERIOD 158 -0.03 PERIOD 183 -0.06
PERIOD 109 -0.20 PERIOD 134 0.09 PERIOD 159 0.00 PERIOD 184 0.19
PERIOD 110 0.04 PERIOD 135 -0.09 PERIOD 160 0.01 PERIOD 185 -0.10
PERIOD 111 0.06 PERIOD 136 -0.13 PERIOD 161 -0.09 PERIOD 186 -0.08
PERIOD 112 0.27 PERIOD 137 -0.05 PERIOD 162 -0.07 PERIOD 187 -0.10
PERIOD 113 -0.02 PERIOD 138 0.04 PERIOD 163 -0.01 PERIOD 188 -0.02
PERIOD 114 -0.02 PERIOD 139 0.09 PERIOD 164 -0.03 PERIOD 189 -0.04
PERIOD 115 -0.11 PERIOD 140 0.24 PERIOD 165 -0.03 PERIOD 190 0.26
PERIOD 116 0.02 PERIOD 141 0.00 PERIOD 166 0.41 PERIOD 191 0.05
PERIOD 117 -0.08 PERIOD 142 -0.14 PERIOD 167 0.09 PERIOD 192 -0.07
PERIOD 118 -0.12 PERIOD 143 -0.05 PERIOD 168 -0.01 PERIOD 193 0.33
PERIOD 119 0.04 PERIOD 144 0.00 PERIOD 169 0.46 PERIOD 194 -0.03
PERIOD 120 -0.03 PERIOD 145 -0.12 PERIOD 170 -0.07 PERIOD 195 -0.04
PERIOD 121 0.04 PERIOD 146 0.27 PERIOD 171 -0.10 PERIOD 196 0.17
PERIOD 122 0.01 PERIOD 147 -0.03 PERIOD 172 0.05 PERIOD 197 -0.04
PERIOD 123 0.01 PERIOD 148 -0.14 PERIOD 173 0.02 PERIOD 198 -0.07
PERIOD 124 -0.19 PERIOD 149 -0.11 PERIOD 174 -0.08 PERIOD 199 0.17
PERIOD 125 0.06 PERIOD 150 0.03 PERIOD 175 -0.36 PERIOD 200 0.00

PERIOD 201 -0.04
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Appendix 0. Residual Autocorrelations and Partial Autocorrelations of the

Combined Series with Target Region 11

This appendix contains the residual autocorrelations and the residual partial autocorrelations

from fitting the estimated SSTMA(2 1,1)12 model to the combined series with target region 7. The

residual autocorrelations and residual autocorrelations were calculated for the first forty-four lags.

Any residual autocorrelation or any residual partial autocorrelation that is greater than 0.14 or less

than -0.14 is significantly different from zero. Each row represents a lag.

Table 71. Residual Autocorrelations and Residual Partial Autocorrelations of the Combined Se-
ries with Target Region 11

I AC IPACI
LAG 1 -0.03 -0.03
LAG 2 -0.05 -0.05
LAG 3 0.02 0.02
LAG 4 -0.04 -0.04
LAG 5 -0.07 -0.07
LAG 6 -0.04 -0.04
LAG 7 -0.09 -0.10
LAG 8 -0.04 -0.05
LAG 9 0.15 0.14

LAG 10 0.13 0.14
LAG 11 0.09 0.11
LAG 12 -0.03 -0.03
LAG 13 0.05 0.04
LAG 14 0.03 0.05
LAG 15 -0.07 -0.04
LAG 16 -0.02 0.02
LAG 17 0.02 0.06
LAG 18 0.01 0.03
LAG 19 -0.01 -0.04
LAG 20 0.08 0.03
LAG 21 -0.01 -0.01
LAG 22 -0.01 -0.02
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Table 72. Residual Autocorrelations and Residual Partial Autocorrelations of Combined Series
with target Region 11 continued

_ _ AC I PA~l
LAG 23 0.04 0.02
LAG 24 0.04 0.05
LAG 25 -0.07 -0.04
LAG 26 -0.01 -0.01
LAG 27 0.10 0.08
LAG 28 0.04 0.07
LAG 29 0.04 0.05
LAG 30 0.05 0.05
LAG 31 -0.09 -0.09
LAG 32 -0.03 -0.03
LAG 33 0.00 -0.02
LAG 34 -0.05 -0.03
LAG 35 -0.10 -0.08
LAG 36 0.01 -0.01
LAG 37 -0.02 -0.09
LAG 38 0.01 -0.06
LAG 39 0.03 -0.03
LAG 40 -0.05 -0.08
LAG 41 0.03 0.02
LAG 42 -0.01 0.00
LAG 43 -0.05 -0.05
LAG 44 0.03 0.04
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Appendix P. Actual and Predicted Valued for NHAS 2,11,1

This appendix contains actual and predicted values of NHASjk for event type 2, geographical

region 11, and time block 1 for all sixty-seven observations. Each row represents a period.

Table 73. Actual and Predicted Values for NHAS2 ,11 ,1

I NHAS2 ,11,1  PREDICTED NHAS 2 ,1 1,i]
PERIOD 1 0.27 0.09
PERIOD 2 0.00 0.09
PERIOD 3 0.01 0.07
PERIOD 4 -0.01 -0.03
PERIOD 5 -0.01 0.04
PERIOD 6 0.00 0.05
PERIOD 7 -0.01 -0.02
PERIOD 8 -0.01 0.01
PERIOD 9 0.02 0.00
PERIOD10 0.00 0.02
PERIODll -0.33 -0.11
PERIOD12 0.00 -0.09
PERIOD13 -0.40 -0.14
PERIOD14 0.00 -0.02
PERIOD15 -0.01 -0.07
PERIOD16 0.02 0.10
PERIOD17 0.01 0.04
PERIOD18 0.02 0.02
PERIOD19 0.03 0.05
PERIOD20 0.07 0.04
PERIOD21 0.10 0.01
PERIOD22 0.31 0.09
PERIOD23 -0.05 0.29
PERIOD24 0.15 -0.03
PERIOD25 0.03 0.16
PERIOD26 -0.10 0.07
PERIOD27 -0.04 -0.06
PERIOD28 0.10 0.01
PERIOD29 -0.01 0.10
PERIOD30 0.52 0.05
PERIOD31 0.62 0.21
PERIOD32 0.11 0.35
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Table 74. Actual and Predicted Values for NHAS 2 ,11,1 continued

I NHAS 2 , 11 , 1  PREDICTED NHAS 2 ,11,1

PERIOD33 0.09 0.04
PERIOD34 -0.23 -0.21
PERIOD35 -0.03 0.14
PERIOD36 -0.12 -0.11
PERIOD37 -0.13 0.06
PERIOD38 0.31 0.03
PERIOD39 0.01 0.14
PERIOD40 -0.04 0.07
PERIOD41 0.03 -0.02
PERIOD42 -0.46 -0.26
PERIOD43 -0.55 -0.35
PERIOD44 -0.02 -0.19
PERIOD45 -0.12 -0.04
PERIOD46 0.00 0.12
PERIOD47 -0.04 0.04
PERIOD48 -0.16 -0.01
PERIOD49 -0.04 0.09
PERIOD50 -0.33 -0.19
PERIOD51 0.02 -0.03
PERIOD52 -0.02 0.03
PERIOD53 0.22 0.05
PERIOD54 0.21 0.21
PERIOD55 0.24 0.25
PERIOD56 0.45 0.02
PERIOD57 0.71 0.26
PERIOD58 0.50 0.46
PERIOD59 -0.01 0.33
PERIOD60 0.01 0.03
PERIOD61 0.02 0.03
PERIOD62 0.38 0.17
PERIOD63 0.07 0.16
PERIOD64 0.38 0.12
PERIOD65 0.34 0.02
PERIOD66 0.42 0.24
PERIOD67 0.37 0.20
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Appendix Q. Actual, Predicted, and Transformed Predicted Values of the

Historical Frequencies for Event Type 2, Geographical Region 11, and Time Block 1

This appendix contains the actual, predicted, and transformed predicted values of the monthly

observations of the observed historical frequency XijL for event type 2, geographical region 11, and

time block 1. Each row represents a month.

Table 75. Actual, Predicted, and Transformed Predicted Values of Historical Frequencies X2 ,11,1

PREDICTED X 2,11,1 TRANSFORMED X 2 ,11, 1 ACTUAL X 2,1 1 ,1]

JAN 1985 0.13 0.13 0.13
FEB 1985 0.00 0.00 0.00
MAR 1985 0.00 0.00 0.00
APR 1985 0.00 0.00 0.00
MAY 1985 0.00 0.00 0.00
JUN 1985 0.00 0.00 0.00
JUL 1985 0.00 0.00 0.00
AUG 1985 0.00 0.00 0.00
SEP 1985 0.00 0.00 0.00
OCT 1985 0.00 0.00 0.00
NOV 1985 0.33 0.33 0.33
DEC 1985 0.00 0.00 0.00
JAN 1986 0.22 0.22 0.40
FEB 1986 0.09 0.09 0.00
MAR 1986 0.06 0.06 0.00
APR 1986 -0.02 0.00 0.00
MAY 1986 0.05 0.05 0.00
JUN 1986 0.05 0.05 0.00
JUL 1986 -0.01 0.00 0.00
AUG 1986 0.02 0.02 0.00
SEP 1986 -0.02 0.00 0.00
OCT 1986 0.02 0.02 0.00
NOV 1986 0.22 0.22 0.00
DEC 1986 -0.09 0.00 0.00
JAN 1987 0.26 0.26 0.00
FEB 1987 -0.02 0.00 0.00
MAR 1987 -0.05 0.00 0.01
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Table 76. Actual, Predicted, and Transformed Predicted Values of Historical Frequencies X 2,11,1
continued

[PREDICTED X 2,11,1 TRANSFORMED X 2 ,11,1 ACTUAL X2 ,1 1 ,1

APR 1987 0.08 0.08 0.00
MAY 1987 0.03 0.03 0.00
JUN 1987 0.00 0.00 0.00
JUL 1987 0.02 0.02 0.00
AUG 1987 0.00 0.00 0.03
SEP 1987 0.02 0.02 0.11
OCT 1987 0.09 0.09 0.31
NOV 1987 0.39 0.39 0.05
DEC 1987 -0.01 0.00 0.17
JAN 1988 0.20 0.20 0.07
FEB 1988 0.17 0.17 0.00
MAR 1988 -0.02 0.00 0.00
APR 1988 -0.01 0.00 0.08
MAY 1988 0.11 0.11 0.00
JUN 1988 0.03 0.03 0.50
JUL 1988 0.17 0.17 0.58
AUG 1988 0.35 0.35 0.11
SEP 1988 0.11 0.11 0.16
OCT 1988 0.06 0.06 0.04
NOV 1988 0.22 0.22 0.05
DEC 1988 0.16 0.16 0.15
JAN 1989 0.22 0.22 0.03
FEB 1989 0.05 0.05 0.33
MAR 1989 0.13 0.13 0.00
APR 1989 0.13 0.13 0.02
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Table 77. Actual, Predicted, and Transformed Predicted Values of Historical Frequencies X.j1 ,1
continued

I PREDICTED X 2 , 1 1 ,1 TRANSFORMED X 2 , 1 , 1  ACTUAL X 2 , 1 1 ,1
MAY 1989 -0.04 0.00 0.01
JUN 1989 0.22 0.22 0.02
JUL 1989 0.21 0.21 0.01
AUG 1989 -0.10 0.00 0.07
SEP 1989 0.10 0.10 0.02
OCT 1989 0.16 0.16 0.04
NOV 1989 0.11 0.11 0.03
DEC 1989 0.15 0.15 0.00
JAN 1990 0.13 0.13 0.00
FEB 1990 0.14 0.14 0.00
MAR 1990 -0.03 0.00 0.02
APR 1990 0.05 0.05 0.00
MAY 1990 0.06 0.06 0.23
JUN 1990 0.24 0.24 0.24
JUL 1990 0.27 0.27 0.26
AUG 1990 0.10 0.10 0.53
SEP 1990 0.29 0.29 0.74
OCT 1990 0.50 0.50 0.54
NOV 1990 0.34 0.34 0.00
DEC 1990 0.02 0.02 0.00
JAN 1991 0.03 0.03 0.02
FEB 1991 0.17 0.17 0.38
MAR 1991 0.17 0.17 0.08
APR 1991 0.12 0.12 0.38
MAY 1991 0.25 0.25 0.57
JUN 1991 0.48 0.48 0.66
JUL 1991 0.47 0.47 0.64
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Appendix R. Combined Series With Target Region 7

This appendix contains the the NHAS 2 j, 1 values for target region 7, the weighted sum of

the first order neighbors of target region 7, and the weighted sum of the second order neighbors

of target region 7. The combined series results if the rows are read across. Each row represents a

period.

Table 78. Combined Series for Target Region 7

1 TARGET 7 1ST ORDER 2ND ORDER]

PERIOD 1 0.27 0.17 -0.11
PERIOD 2 0.00 0.02 -0.10
PERIOD 3 0.01 -0.03 0.11
PERIOD 4 -0.01 -0.18 -0.05
PERIOD 5 -0.01 -0.06 -0.06
PERIOD 6 0.00 -0.06 0.10
PERIOD 7 -0.01 0.00 0.00
PERIOD 8 -0.01 0.00 0.00
PERIOD 9 0.02 0.00 -0.16

PERIOD 10 0.00 -0.07 -0.07
PERIOD 11 -0.33 -0.36 0.00
PERIOD 12 0.00 0.10 -0.08
PERIOD 13 -0.40 -0.25 -0.03
PERIOD 14 0.00 -0.01 0.11
PERIOD 15 -0.01 0.00 -0.08
PERIOD 16 0.02 0.02 0.12
PERIOD 17 0.01 0.11 0.00
PERIOD 18 0.02 0.03 -0.06
PERIOD 19 0.03 0.01 0.00
PERIOD 20 0.07 0.20 0.05
PERIOD 21 0.10 0.08 0.07
PERIOD 22 0.31 0.18 0.06
PERIOD 23 -0.05 0.00 0.07
PERIOD 24 0.15 0.01 -0.01
PERIOD 25 0.03 0.02 0.08
PERIOD 26 -0.10 -0.02 -0.06
PERIOD 27 -0.04 0.07 -0.08
PERIOD 28 0.10 0.04 -0.04
PERIOD 29 -0.01 -0.08 -0.04
PERIOD 30 0.52 0.22 -0.07
PERIOD 31 0.62 0.27 0.04
PERIOD 32 0.11 -0.05 -0.02
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Table 79. Combined Series for Target Region 7 continued

[TARGET 7 1ST ORDER 2ND ORDER]

PERIOD 33 0.09 0.07 0.08
PERIOD 34 -0.23 0.06 0.09
PERIOD 35 -0.03 0.05 0.04
PERIOD 36 -0.12 -0.07 0.07
PERIOD 37 -0.13 -0.10 0.06
PERIOD 38 0.31 0.05 0.03
PERIOD 39 0.01 0.02 0.03
PERIOD 40 -0.04 0.11 -0.04
PERIOD 41 0.03 0.09 0.04

PERIOD 42 -0.46 -0.10 -0.01
PERIOD 43 -0.55 -0.11 0.00
PERIOD 44 -0.02 -0.02 0.03
PERIOD 45 -0.12 0.04 -0.06
PERIOD 46 0.00 -0.16 0.00
PERIOD 47 -0.04 -0.03 -0.05
PERIOD 48 -0.16 -0.17 0.01
PERIOD 49 -0.04 -0.04 -0.07
PERIOD 50 -0.33 -0.06 0.04
PERIOD 51 0.02 0.01 0.06
PERIOD 52 -0.02 -0.03 0.08
PERIOD 53 0.22 0.04 0.03
PERIOD 54 0.21 0.01 0.04
PERIOD 55 0.24 0.02 0.00
PERIOD 56 0.45 0.18 -0.02
PERIOD 57 0.71 0.15 -0.04
PERIOD 58 0.50 0.21 -0.09
PERIOD 59 -0.01 -0.07 0.00
PERIOD 60 0.01 0.00 -0.08
PERIOD 61 0.02 0.03 -0.03
PERIOD 62 0.38 0.06 -0.10
PERIOD 63 0.07 0.04 -0.05
PERIOD 64 0.38 0.07 -0.10
PERIOD 65 0.34 0.12 -0.05
PERIOD 66 0.42 0.15 -0.05
PERIOD 67 0.37 0.14 -0.03
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Appendix S. Residual Autocorrelations and Partial Autocorrelations for Combined

Series with Target Region 7

This appendix contains the residual autocorrelations and the residual partial autocorrelations

from fitting the estimated SSTMA(2 1,1 )12 model created on target region 11 to the combined series

with target region 7. The residual autocorrelations and residual autocorrelations were calculated

for the first forty-four lags. Any residual autocorrelation or any residual partial autocorrelation

that is greater than 0.14 or less than -0.14 is significantly different from zero. Each row represents

a lag.

Table 80. Residual Autocorrelations and Residual Partial Autocorrelations for Combined Series
with Target Region 7

[A [n IPACI

LAG 1 -0.03 -0.03
LAG 2 -0.05 -0.05
LAG 3 0.02 0.02
LAG 4 -0.04 -0.04
LAG 5 -0.07 -0.07
LAG 6 -0.04 -0.04
LAG 7 -0.09 -0.10
LAG 8 -0.04 -0.05
LAG 9 0.15 0.14
LAG 10 0.13 0.14
LAG 11 0.09 0.11
LAG 12 -0.03 -0.03
LAG 13 0.05 0.04
LAG 14 0.03 0.05
LAG 15 -0.07 -0.04
LAG 16 -0.02 0.02
LAG 17 0.02 0.06
LAG 18 0.01 0.03
LAG 19 -0.01 -0.04
LAG 20 0.08 0.03
LAG 21 -0.01 -0.01
LAG 22 -0.01 -0.02
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Table 81. Residual Autocorrelations and Residual Partial Autocorrelations for Combined Series

with Target Region 7 continued

E AC I PACJ
LAG 23 0.04 0.02

LAG 24 0.04 0.05
LAG 25 -0.07 -0.04

LAG 26 -0.01 -0.01
LAG 27 0.10 0.08

LAG 28 0.04 0.07
LAG 29 0.04 0.05
LAG 30 0.05 0.05
LAG 31 -0.09 -0.09

LAG 32 -0.03 -0.03

LAG 33 0.00 -0.02
LAG 34 -0.05 -0.03

LAG 35 -0.10 -0.08

LAG 36 0.01 -0.01

LAG 37 -0.02 -0.09
LAG 38 0.01 -0.06

LAG 39 0.03 -0.03
LAG 40 -0.05 -0.08

LAG 41 0.03 0.02
LAG 42 -0.01 0.00

LAG 43 -0.05 -0.05
LAG 44 0.03 0.04
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Appendix T. Actual and Predicted Valued for NHAS 2,7 ,1

This appendix contains actual and predicted values of NHASij for event type 2, geographical

region 7, and time block 1 for all sixty-seven observations. Each row represents a period.

Table 82. Actual and Predicted Values for NHAS 2,7 ,1

[PREDICTED NHAS,, 7,1  NHAS 2,7,1

PERIOD 1 0.09 0.27
PERIOD 2 0.09 0.00
PERIOD 3 0.09 0.01
PERIOD 4 -0.03 -0.01
PERIOD 5 0.03 -0.01
PERIOD 6 0.08 0.00
PERIOD 7 -0.02 -0.01
PERIOD 8 -0.02 -0.01
PERIOD 9 0.02 0.02
PERIOD 10 0.03 0.00
PERIOD 11 -0.11 -0.33
PERIOD 12 -0.09 0.00
PERIOD 13 -0,15 -0.40
PERIOD 14 0.00 0.00
PERIOD 15 -0.06 -0.01
PERIOD 16 0.08 0.02
PERIOD 17 0.05 0.01
PERIOD 18 0.02 0.02
PERIOD 1C 0.05 0.03
PERIOD 20 0.04 0.07
PERIOD 21 0.01 0.10
PERIOD 22 0.07 0.31
PERIOD 23 0.29 -0.05
PERIOD 24 -0.02 0.15
PERIOD 25 0.14 0.03
PERIOD 26 0.08 -0.10
PERIOD 27 -0.06 -0.04
PERIOD 28 0.01 0.10
PERIOD 29 0.11 -0.01
PERIOD 30 0.05 0.52
PERIOD 31 0.22 0.62
PERIOD 32 0.36 0.11
PERIOD 33 0.02 0.09
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Table 83. Actual and Predicted Values for NHAS 2,7 ,1 continued

PREDICTED NHAS 2,7 ,1 NHAS 2,7,1

PERIOD 34 -0.20 -0.23

PERIOD 35 0.15 -0.03

PERIOD 36 -0.14 -0.12

PERIOD 37 0.07 -0.13

PERIOD 38 0.04 0.31
PERIOD 39 0.12 0.01

PERIOD 40 0.08 -0.04
PERIOD 41 -0.01 0.03

PERIOD 42 -0.27 -0.46
PERIOD 43 -0.36 -0.55

PERIOD 44 -0.18 -0.02

PERIOD 45 -0.05 -0.12

PERIOD 46 0.13 0.00
PERIOD 47 0.05 -0.04
PERIOD 48 -0.02 -0.16

PERIOD 49 0.08 -0.04

PERIOD 50 -0.19 -0.33
PERIOD 51 -0.04 0.02
PERIOD 52 0.02 -0.02

PERIOD 53 0.06 0.22
PERIOD 54 0.20 0.21

PERIOD 55 0.25 0.24

PERIOD 56 0.04 0.45
PERIOD 57 0.25 0.71

PERIOD 58 0.48 0.50
PERIOD 59 0.35 -0.01

PERIOD 60 0.03 0.01

PERIOD 61 0.00 0.02
PERIOD 62 0.19 0.38

PERIOD 63 0.17 0.07

PERIOD 64 0.12 0.38
PERIOD 65 0.01 0.34

PERIOD 66 0.25 0.42

PERIOD 67 0.20 0.37
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Appendix U. Actual, Predicted, and Transformed Predicted Values of the

Historical Frequencies for Event Type 2, Geographical Region 7, and Time Block 1

This appendix contains the actual, predicted, and transformed predicted values of the monthly

observations of the observed historical frequency Xijk for event type 2, geographical region 7, and

time block 1. Each row represents a month.

Table 84. Actual, Predicted, and Transformed Predicted Values of Historical Frequencies X2,7,1

PREDICTED X 2,7 ,1 TRANSFORMED X2 ,7,1 ACTUALX2,7,1
JAN 1985 0.00 0.00 0.00
FEB 1985 0.00 0.00 0.00
MAR 1985 0.33 0.33 0.33
APR 1985 0.00 0.00 0.00
MAY 1985 0.00 0.00 0.00
JUN 1985 0.00 0.00 0.00
JUL 1985 0.00 0.00 0.00
AUG 1985 0.00 0.00 0.00
SEP 1985 0.00 0.00 0.00
OCT 1985 0.18 0.18 0.18
NOV 1985 0.00 0.00 0.00
DEC 1985 0.00 0.00 0.00
JAN 1986 0.19 0.19 0.00
FEB 1986 0.08 0.08 0.00
MAR 1986 0.43 0.43 0.00
APR 1986 -0.02 0.00 0.00
MAY 1986 0.03 0.03 0.50
JUN 1986 0.08 0.08 0.00
JUL 1986 -0.02 0.00 0.00
AUG 1986 -0.02 0.00 0.00
SEP 1986 0.04 0.04 0.00
OCT 1986 0.20 0.20 0.00
NOV 1986 -0.09 0.00 0.00
DEC 1986 0.01 0.01 0.00
JAN 1987 -0.19 0.00 0.00
FEB 1987 0.01 0.01 0.06
MAR 1987 -0.07 0.00 0.30
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Table 85. Actual, Predicted, and Transformed Predicted Values of Historical Frequencies X 2 , 7 ,1
continued

I PREDICTED X 2 ,7, 1 TRANSFORMED X 2 ,7 ,1 f ACTUAL X 2 ,7, 1

APR 1987 0.06 0.06 0.04
MAY 1987 0.54 0.54 0.00
JUN 1987 0.02 0.02 0.00
JUL 1987 0.04 0.04 0.00
AUG 1987 0.02 0.02 0.06
SEP 1987 -0.04 0.00 0.43
OCT 1987 0.06 0.06 0.03
NOV 1987 0.21 0.21 0.30
DEC 1987 -0.19 0.00 0.17
JAN 1988 -0.03 0.00 0.24
FEB 1988 0.05 0.05 0.50
MAR 1988 0.24 0.24 0.67
APR 1988 0.05 0.05 0.08
MAY 1988 0.10 0.10 0.67
JUN 1988 0.05 0.05 0.00
JUL 1988 0.21 0.21 0.04
AUG 1988 0.41 0.41 0.06
SEP 1988 0.42 0.42 0.18
OCT 1988 -0.21 0.00 0.04
NOV 1988 0.35 0.35 0.14
DEC 1988 -0.10 0.00 0.00
JAN 1989 0.21 0.21 0.07
FEB 1989 0.52 0.52 0.20
MAR 1989 0.74 0.74 0.38
APR 1989 0.14 0.14 0.10
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Table 86. Actual, Predicted, and Transformed Predicted Values of Historical Frequencies X 2,7,1
continued

I PREDICTED X 2 ,7 , 1 TRANSFORMED X 2 ,7 , 1 ACTUAL X 2 ,7 ,1

MAY 1989 0.66 0.66 0.00
JUN 1989 -0.27 0.00 0.02
JUL 1989 -0.32 0.00 0.02
AUG 1989 -0.12 0.00 0.00
SEP 1989 0.12 0.12 0.16
OCT 1989 0.17 0.17 0.20
NOV 1989 0.19 0.19 0.57
DEC 1989 -0.03 0.00 0.20
JAN 1990 0.14 0.14 0.65
FEB 1990 0.01 0.01 0.41
MAR 1990 0.34 0.34 0.09
APR 1990 0.12 0.12 0.01
MAY 1990 0.06 0.06 0.00
JUN 1990 0.22 0.22 0.00
JUL 1990 0.27 0.27 0.00
AUG 1990 0.04 0.04 0.05
SEP 1990 0.41 0.41 0.00
OCT 1990 0.68 0.68 0.14
NOV 1990 0.91 0.91 0.87
DEC 1990 0.24 0.24 0.70
JAN 1991 0.67 0.67 0.88
FEB 1991 0.61 0.61 0.46
MAR 1991 0.27 0.27 0.27
APR J991 0.13 0.13 0.06
MAY 1991 0.01 0.01 0.01
JUN 1991 0.25 0.25 0.00
JUL 1991 0.20 0.20 0.00
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Appendix V. Description of Floppy Disk Files

All of the floppy disk files are in LOTUS 1-2-3 format. The files can be loaded into either

LOTUS 1-2-3 or QuattroPro.

HISTORICAL.WKE: Monthly historical relative frequencies X2j, 1 for all twenty-two geo-

graphical regions from January of 1985 through July of 1991.

ANALYTICAL.WKE: Monthly analytical predictions P2j,1 for all twenty-two geographical

regions from January of 1985 through July of 1991.

NORMAN.WKE: Normalized monthly analytical predictions for all twenty-two geographical

regions from January of 1985 through July of 1991.

NHA.WKE: Database containing observations of normalized monthly analytical predictions

subtracted from monthly historical relative frequencies NHA 2 ,j, for all twenty-two geographical

regions from January of 1985 through July of 1991.

ACNHA.WKE: Autocorrelations of NHA2,1l for all twenty-two geographical regions calcu-

lated for the first twenty lags.

NHAS.WKE: Database containing the de-seasonalized NHA2,j, values NHAS 2,j,1 for all

twenty-two geographical regions from period 1 though period 67.

ACNHAS.WKE: Autocorrelations of NHAS 2dj for all twenty-two geographical regions cal-

culated for the first seenteei, lags.

PACNHAS1.WKE: Partial autocorrelations of NHAS2,iij calculated for the first seventeen

lags.

SERIES11.WKE: Combined series with target region 11.

ACCOMBIN.WKE: Autocorrelations and partial autocorrelations for the combined series

with target region 11 calculated for the first forty-four lags.
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ERROR21.WKE: Residuals from fitting the estimated SSTMA(2 1,1)12 model to the combined

series with target region 11.

PACERROR.WKE: Residual autocorrelations and residual partial autocorrelations from fit-

ting the estimated SSTMA(2 1,1)12 model to the combined series with target region 11 calculated

for the first forty-four lags.

FITNHAS1.WKE: Fitted values of NHAS 2 ,11,1 using the estimated SSTMA(2 1,1 ) 12 model.

FITTGT11.WKE: Predictions P2,11,1 using the estimated SSTMA(2 1,1)12 model.

STARMA7.WKE: Combined series with target region 7.

ACRESID7.WKE: Residual autocorrelations and residual partial autocorrelations from fitting

the combined series with target region 7 with the estimated SSTMA(2 1,1 )12 model developed from

the combined series with target region 11 calculated for the first forty-four lags.

FITNHAS7.WKE: Fitted values of NHAS, 7 ,1 using the estimated SSTMA(2 1,1)12 model

developed from the combined series with target region 11.

FITTGT7.WKE: Predictions 12,7,1 using the estimated SSTMA(2 1,1)12 model developed from

the combined series with target region 11.
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